IDEAS home Printed from https://ideas.repec.org/p/mcl/mclwop/2009-09.html
   My bibliography  Save this paper

Errors-In-Variables Models: A Generalized Functions Approach

Author

Listed:
  • Victoria Zinde-Walsh

    ()

Abstract

Identification in errors-in-variables regression models was recently extended to wide models classes by S. Schennach (Econometrica, 2007) (S) via use of generalized functions. In this paper the problems of non- and semi- parametric identification in such models are re-examined. Nonparametric identification holds under weaker assumptions than in (S); the proof here does not rely on decomposition of generalized functions into ordinary and singular parts, which may not hold. Conditions for continuity of the identification mapping are provided and a consistent nonparametric plug-in estimator for regression functions in the L₁ space constructed. Semiparametric identification via a finite set of moments is shown to hold for classes of functions that are explicitly characterized; unlike (S) existence of a moment generating function for the measurement

Suggested Citation

  • Victoria Zinde-Walsh, 2009. "Errors-In-Variables Models: A Generalized Functions Approach," Departmental Working Papers 2009-09, McGill University, Department of Economics.
  • Handle: RePEc:mcl:mclwop:2009-09
    as

    Download full text from publisher

    File URL: http://www.mcgill.ca/files/economics/ZindeWalshsept28WorkingPaper.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zinde-Walsh, Victoria, 2008. "Kernel Estimation When Density May Not Exist," Econometric Theory, Cambridge University Press, vol. 24(03), pages 696-725, June.
    2. P. C. B. Phillips, 1985. "A Theorem on the Tail Behaviour of Probability Distributions with an Application to the Stable Family," Canadian Journal of Economics, Canadian Economics Association, vol. 18(1), pages 58-65, February.
    3. Victoria Zinde-Walsh & Peter C.B. Phillips, 2003. "Fractional Brownian Motion as a Differentiable Generalized Gaussian Process," Cowles Foundation Discussion Papers 1391, Cowles Foundation for Research in Economics, Yale University.
    4. Wang, Liqun & Hsiao, Cheng, 2011. "Method of moments estimation and identifiability of semiparametric nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 165(1), pages 30-44.
    5. Hausman, Jerry A. & Newey, Whitney K. & Ichimura, Hidehiko & Powell, James L., 1991. "Identification and estimation of polynomial errors-in-variables models," Journal of Econometrics, Elsevier, vol. 50(3), pages 273-295, December.
    6. Wang, Liqun, 1998. "Estimation of censored linear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 84(2), pages 383-400, June.
    7. Whitney K. Newey, 2001. "Flexible Simulated Moment Estimation Of Nonlinear Errors-In-Variables Models," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 616-627, November.
    8. Phillips, Peter C.B., 1995. "Robust Nonstationary Regression," Econometric Theory, Cambridge University Press, vol. 11(05), pages 912-951, October.
    9. Susanne M Schennach, 2007. "Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models," Econometrica, Econometric Society, vol. 75(1), pages 201-239, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:taf:gnstxx:v:22:y:2010:i:4:p:419-423 is not listed on IDEAS
    2. D’Haultfoeuille, Xavier, 2011. "On The Completeness Condition In Nonparametric Instrumental Problems," Econometric Theory, Cambridge University Press, vol. 27(03), pages 460-471, June.
    3. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    4. repec:taf:gnstxx:v:22:y:2010:i:4:p:379-399 is not listed on IDEAS

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mcl:mclwop:2009-09. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shama Rangwala). General contact details of provider: http://edirc.repec.org/data/demcgca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.