IDEAS home Printed from https://ideas.repec.org/f/pri417.html
   My authors  Follow this author

Olivia Ricci

Personal Details

First Name:Olivia
Middle Name:
Last Name:Ricci
Suffix:
RePEc Short-ID:pri417

Affiliation

Centre d'Économie et de Management de l'Océan Indien (CEMOI)
Faculté de Droit et de Sciences Économiques et Politiques
Université de la Réunion

St-Denis, Réunion
http://cemoi.univ-reunion.fr/

+ (262) 93 84 72
+ (262) 93 84 80
BP 7151, 97715 Saint-Denis Mess. Cedex 9
RePEc:edi:ceunire (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Sandrine Selosse & Olivia Ricci & Sabine Garabedian & Nadia Maïzi, 2018. "Exploring sustainable energy future in Reunion Island," Post-Print hal-01924755, HAL.
  2. Sabine Garabedian & Olivia Ricci, 2018. "Les territoires ultramarins face à la transition énergétique : les apports d’un MEGC pour La Réunion," TEPP Research Report 2018-01, TEPP.
  3. Bérangère Legendre & Olivia Ricci, 2015. "Measuring fuel poverty in France: Which households are the most fuel vulnerable?," Post-Print hal-01283999, HAL.
  4. Olivia Ricci & Sandrine Selosse & Sabine Garabedian & Nadia Maizi, 2014. "Réunion Island's energy autonomy objective by 2030," EcoMod2014 7069, EcoMod.
  5. Olivia Ricci & Legendre Bérangère, 2014. "Measuring Fuel Poverty in France: Which Households Are the Most Vulnerable?," EcoMod2014 6923, EcoMod.
  6. Olivia Ricci, 2014. "Politiques de soutien à la capture et au stockage géologique du carbone en France," Post-Print hal-01245307, HAL.
  7. Olivia RICCI, 2012. "Politiques de soutien à la capture et au stockage du carbone en France : un modèle d'équilibre général calculable," LEO Working Papers / DR LEO 2257, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
  8. Olivia RICCI, 2011. "Providing adequate economic incentives for bioenergies with CO2 capture and geological storage," LEO Working Papers / DR LEO 2259, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.

Articles

  1. Selosse, Sandrine & Ricci, Olivia & Garabedian, Sabine & Maïzi, Nadia, 2018. "Exploring sustainable energy future in Reunion Island," Utilities Policy, Elsevier, vol. 55(C), pages 158-166.
  2. Selosse, Sandrine & Garabedian, Sabine & Ricci, Olivia & Maïzi, Nadia, 2018. "The renewable energy revolution of reunion island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 99-105.
  3. Selosse, Sandrine & Ricci, Olivia, 2017. "Carbon capture and storage: Lessons from a storage potential and localization analysis," Applied Energy, Elsevier, vol. 188(C), pages 32-44.
  4. Legendre, Bérangère & Ricci, Olivia, 2015. "Measuring fuel poverty in France: Which households are the most fuel vulnerable?," Energy Economics, Elsevier, vol. 49(C), pages 620-628.
  5. Olivia Ricci, 2015. "Politiques de soutien à la capture et au stockage géologique du carbone en France," Revue économique, Presses de Sciences-Po, vol. 66(2), pages 401-425.
  6. Selosse, Sandrine & Ricci, Olivia, 2014. "Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model," Energy, Elsevier, vol. 76(C), pages 967-975.
  7. Ricci, Olivia & Selosse, Sandrine, 2013. "Global and regional potential for bioelectricity with carbon capture and storage," Energy Policy, Elsevier, vol. 52(C), pages 689-698.
  8. Olivia Ricci & Sandrine Selosse, 2013. "A cost analysis of the Copenhagen emission reduction pledges," Economics Bulletin, AccessEcon, vol. 33(1), pages 764-771.
  9. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
  10. Ricci, Olivia, 2012. "Providing adequate economic incentives for bioenergies with CO2 capture and geological storage," Energy Policy, Elsevier, vol. 44(C), pages 362-373.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Sandrine Selosse & Olivia Ricci & Sabine Garabedian & Nadia Maïzi, 2018. "Exploring sustainable energy future in Reunion Island," Post-Print hal-01924755, HAL.

    Cited by:

    1. Marula Tsagkari, 2020. "Local Energy Projects on Islands: Assessing the Creation and Upscaling of Social Niches," Sustainability, MDPI, Open Access Journal, vol. 12(24), pages 1-18, December.
    2. Marula Tsagkari & Jordi Roca Jusmet, 2020. "Renewable Energy Projects on Isolated Islands in Europe: A Policy Review," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 21-30.
    3. Llerena-Pizarro, Omar R. & Micena, Raul Pereira & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Electricity sector in the Galapagos Islands: Current status, renewable sources, and hybrid power generation system proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 65-75.
    4. Rusu, Eugen & Onea, Florin, 2019. "An assessment of the wind and wave power potential in the island environment," Energy, Elsevier, vol. 175(C), pages 830-846.
    5. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    6. Sabine, Garabedian & Avotra, Narindranjanahary & Olivia, Ricci & Sandrine, Selosse, 2020. "A macroeconomic evaluation of a carbon tax in overseas territories: A CGE model for Reunion Island," Energy Policy, Elsevier, vol. 147(C).

  2. Sabine Garabedian & Olivia Ricci, 2018. "Les territoires ultramarins face à la transition énergétique : les apports d’un MEGC pour La Réunion," TEPP Research Report 2018-01, TEPP.

    Cited by:

    1. Sabine, Garabedian & Avotra, Narindranjanahary & Olivia, Ricci & Sandrine, Selosse, 2020. "A macroeconomic evaluation of a carbon tax in overseas territories: A CGE model for Reunion Island," Energy Policy, Elsevier, vol. 147(C).

  3. Bérangère Legendre & Olivia Ricci, 2015. "Measuring fuel poverty in France: Which households are the most fuel vulnerable?," Post-Print hal-01283999, HAL.

    Cited by:

    1. Marlena Piekut, 2020. "Patterns of Energy Consumption in Polish One-Person Households," Energies, MDPI, Open Access Journal, vol. 13(21), pages 1-31, October.
    2. Lisa Bagnoli & Salvador Bertomeu & Antonio Estache, 2020. "How does the Ownership of Electricity Distribution relate to Energy Poverty in Latin America and the Caribbean ?," Working Papers ECARES 2020-37, ULB -- Universite Libre de Bruxelles.
    3. Charlier, Dorothée & Risch, Anna & Salmon, Claire, 2018. "Energy Burden Alleviation and Greenhouse Gas Emissions Reduction: Can We Reach Two Objectives With One Policy?," Ecological Economics, Elsevier, vol. 143(C), pages 294-313.
    4. Ntaintasis, E. & Mirasgedis, S. & Tourkolias, C., 2019. "Comparing different methodological approaches for measuring energy poverty: Evidence from a survey in the region of Attika, Greece," Energy Policy, Elsevier, vol. 125(C), pages 160-169.
    5. Zhang, Dayong & Li, Jiajia & Han, Phoumin, 2019. "A multidimensional measure of energy poverty in China and its impacts on health: An empirical study based on the China family panel studies," Energy Policy, Elsevier, vol. 131(C), pages 72-81.
    6. Primc, Kaja & Slabe-Erker, Renata & Majcen, Boris, 2019. "Constructing energy poverty profiles for an effective energy policy," Energy Policy, Elsevier, vol. 128(C), pages 727-734.
    7. Schleich, Joachim, 2019. "Energy efficient technology adoption in low-income households in the European Union – What is the evidence?," Energy Policy, Elsevier, vol. 125(C), pages 196-206.
    8. Llorca, Manuel & Rodriguez-Alvarez, Ana & Jamasb, Tooraj, 2020. "Objective vs. subjective fuel poverty and self-assessed health," Energy Economics, Elsevier, vol. 87(C).
    9. Bao, Helen X.H. & Li, Steven Haotong, 2020. "Housing wealth and residential energy consumption," Energy Policy, Elsevier, vol. 143(C).
    10. Pérez-Fargallo, Alexis & Rubio-Bellido, Carlos & Pulido-Arcas, Jesús A. & Javier Guevara-García, Fco., 2018. "Fuel Poverty Potential Risk Index in the context of climate change in Chile," Energy Policy, Elsevier, vol. 113(C), pages 157-170.
    11. Mohr, Tanga McDaniel, 2018. "Fuel poverty in the US: Evidence using the 2009 Residential Energy Consumption Survey," Energy Economics, Elsevier, vol. 74(C), pages 360-369.
    12. Audrey Berry, 2019. "The distributional effects of a carbon tax and its impact on fuel poverty: A microsimulation study in the French context," Post-Print hal-01896815, HAL.
    13. Rodríguez-Álvarez, A. & Orea, L. & Jamasb, T., 2016. "Fuel poverty and well-being: a consmer theory and stochastic fronteir approach," Cambridge Working Papers in Economics 1668, Faculty of Economics, University of Cambridge.
    14. Burlinson, Andrew & Giulietti, Monica & Battisti, Giuliana, 2018. "The elephant in the energy room: Establishing the nexus between housing poverty and fuel poverty," Energy Economics, Elsevier, vol. 72(C), pages 135-144.
    15. Maciej Lis & Katarzyna Salach & Konstancja Swiecicka, 2016. "Heterogeneity of the fuel poor in Poland – quantification and policy implications," IBS Working Papers 08/2016, Instytut Badan Strukturalnych.
    16. Dorothée Charlier & Bérangère Legendre, 2020. "Carbon Dioxide Emissions and aging: Disentangling behavior from energy efficiency," Working Papers 2020.13, FAERE - French Association of Environmental and Resource Economists.
    17. Rodriguez-Alvarez, Ana & Orea, Luis & Jamasb, Tooraj, 2019. "Fuel poverty and Well-Being:A consumer theory and stochastic frontier approach," Energy Policy, Elsevier, vol. 131(C), pages 22-32.
    18. Poruschi, Lavinia & Ambrey, Christopher L., 2018. "Densification, what does it mean for fuel poverty and energy justice? An empirical analysis," Energy Policy, Elsevier, vol. 117(C), pages 208-217.
    19. Stabridis, Omar & van Gameren, Edwin, 2018. "Exposure to firewood: Consequences for health and labor force participation in Mexico," World Development, Elsevier, vol. 107(C), pages 382-395.
    20. Baris Yuce & Monjur Mourshed & Yacine Rezgui, 2017. "A Smart Forecasting Approach to District Energy Management," Energies, MDPI, Open Access Journal, vol. 10(8), pages 1-22, July.
    21. Audrey Berry, 2018. "Compensating households from carbon tax regressivity and fuel poverty: a microsimulation study," Working Papers hal-01691088, HAL.
    22. Heindl, Peter & Schüßler, Rudolf, 2019. "A deprivation-based assessment of energy poverty: Conceptual problems and application to Germany," ZEW Discussion Papers 19-036, ZEW - Leibniz Centre for European Economic Research.
    23. Romero, José Carlos & Linares, Pedro & López, Xiral, 2018. "The policy implications of energy poverty indicators," Energy Policy, Elsevier, vol. 115(C), pages 98-108.
    24. Audrey Berry, 2018. "Compensating households from carbon tax regressivity and fuel poverty: a microsimulation study," CIRED Working Papers hal-01691088, HAL.
    25. Awaworyi Churchill, Sefa & Smyth, Russell & Farrell, Lisa, 2020. "Fuel poverty and subjective wellbeing," Energy Economics, Elsevier, vol. 86(C).
    26. Kearns, Ade & Whitley, Elise & Curl, Angela, 2019. "Occupant behaviour as a fourth driver of fuel poverty (aka warmth & energy deprivation)," Energy Policy, Elsevier, vol. 129(C), pages 1143-1155.
    27. Chaton, Corinne & Lacroix, Elie, 2018. "Does France have a fuel poverty trap?," Energy Policy, Elsevier, vol. 113(C), pages 258-268.
    28. Marchand, Robert & Genovese, Andrea & Koh, S.C. Lenny & Brennan, Alan, 2019. "Examining the relationship between energy poverty and measures of deprivation," Energy Policy, Elsevier, vol. 130(C), pages 206-217.
    29. Papada, Lefkothea & Kaliampakos, Dimitris, 2018. "A Stochastic Model for energy poverty analysis," Energy Policy, Elsevier, vol. 116(C), pages 153-164.
    30. Belaïd, Fateh, 2018. "Exposure and risk to fuel poverty in France: Examining the extent of the fuel precariousness and its salient determinants," Energy Policy, Elsevier, vol. 114(C), pages 189-200.
    31. Pino-Mejías, Rafael & Pérez-Fargallo, Alexis & Rubio-Bellido, Carlos & Pulido-Arcas, Jesús A., 2018. "Artificial neural networks and linear regression prediction models for social housing allocation: Fuel Poverty Potential Risk Index," Energy, Elsevier, vol. 164(C), pages 627-641.
    32. Carlos Villalobos Barría & Carlos Chávez & Adolfo Uribe, 2019. "Energy poverty measures and the identification of the energy poor: A comparison between the utilitarian and multidimensional approaches in Chile," Ibero America Institute for Econ. Research (IAI) Discussion Papers 243, Ibero-America Institute for Economic Research.
    33. Dorothée Charlier & Anna Risch & Claire Salmon, 2016. "Reducing the Energy Burden of the Poor and Greenhouse Gas Emissions: Can We Kill Two Birds with One Stone?," Working Papers hal-01385470, HAL.
    34. Schleich, Joachim, 2018. "Energy efficient technology adoption and low-income households in the EU: What is the evidence?," Working Papers "Sustainability and Innovation" S12/2018, Fraunhofer Institute for Systems and Innovation Research (ISI).

  4. Olivia Ricci & Sandrine Selosse & Sabine Garabedian & Nadia Maizi, 2014. "Réunion Island's energy autonomy objective by 2030," EcoMod2014 7069, EcoMod.

    Cited by:

    1. Sandrine Selosse & Olivia Ricci & Sabine Garabedian & Nadia Maïzi, 2018. "Exploring sustainable energy future in Reunion Island," Post-Print hal-01924755, HAL.
    2. Bessafi, Miloud & Oree, Vishwamitra & Khoodaruth, Abdel & Jumaux, Guillaume & Bonnardot, François & Jeanty, Patrick & Delsaut, Mathieu & Chabriat, Jean-Pierre & Dauhoo, Muhammad Zaid, 2018. "Downscaling solar irradiance using DEM-based model in young volcanic islands with rugged topography," Renewable Energy, Elsevier, vol. 126(C), pages 584-593.

  5. Olivia Ricci & Legendre Bérangère, 2014. "Measuring Fuel Poverty in France: Which Households Are the Most Vulnerable?," EcoMod2014 6923, EcoMod.

    Cited by:

    1. Betto, Frida & Garengo, Patrizia & Lorenzoni, Arturo, 2020. "A new measure of Italian hidden energy poverty," Energy Policy, Elsevier, vol. 138(C).
    2. Scarpellini, Sabina & Alexia Sanz Hernández, M. & Moneva, José M. & Portillo-Tarragona, Pilar & Rodríguez, María Esther López, 2019. "Measurement of spatial socioeconomic impact of energy poverty," Energy Policy, Elsevier, vol. 124(C), pages 320-331.
    3. Abbas, Khizar & Li, Shixiang & Xu, Deyi & Baz, Khan & Rakhmetova, Aigerim, 2020. "Do socioeconomic factors determine household multidimensional energy poverty? Empirical evidence from South Asia," Energy Policy, Elsevier, vol. 146(C).
    4. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, Open Access Journal, vol. 13(18), pages 1-17, September.

  6. Olivia RICCI, 2011. "Providing adequate economic incentives for bioenergies with CO2 capture and geological storage," LEO Working Papers / DR LEO 2259, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.

    Cited by:

    1. Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, Open Access Journal, vol. 7(8), pages 1-30, August.
    2. Rübbelke, Dirk & Vögele, Stefan, 2013. "Effects of carbon dioxide capture and storage in Germany on European electricity exchange and welfare," Energy Policy, Elsevier, vol. 59(C), pages 582-588.
    3. Zhang, Zhaoguo & Jin, Xiaocui & Yang, Qingxiang & Zhang, Yi, 2013. "An empirical study on the institutional factors of energy conservation and emissions reduction: Evidence from listed companies in China," Energy Policy, Elsevier, vol. 57(C), pages 36-42.
    4. Zhang, Kun & Wang, Qian & Liang, Qiao-Mei & Chen, Hao, 2016. "A bibliometric analysis of research on carbon tax from 1989 to 2014," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 297-310.
    5. Vögele, Stefan & Rübbelke, Dirk, 2013. "Decisions on investments in photovoltaics and carbon capture and storage: A comparison between two different greenhouse gas control strategies," Energy, Elsevier, vol. 62(C), pages 385-392.
    6. Budzianowski, Wojciech M. & Budzianowska, Dominika A., 2015. "Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations," Energy, Elsevier, vol. 88(C), pages 658-666.
    7. Lomax, Guy & Workman, Mark & Lenton, Timothy & Shah, Nilay, 2015. "Reframing the policy approach to greenhouse gas removal technologies," Energy Policy, Elsevier, vol. 78(C), pages 125-136.
    8. Yi, Qun & Zhao, Yingjie & Huang, Yi & Wei, Guoqiang & Hao, Yanhong & Feng, Jie & Mohamed, Usama & Pourkashanian, Mohamed & Nimmo, William & Li, Wenying, 2018. "Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom," Applied Energy, Elsevier, vol. 225(C), pages 258-272.
    9. Pour, Nasim & Webley, Paul A. & Cook, Peter J., 2018. "Opportunities for application of BECCS in the Australian power sector," Applied Energy, Elsevier, vol. 224(C), pages 615-635.
    10. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS," Applied Energy, Elsevier, vol. 157(C), pages 255-266.
    11. Fridahl, Mathias, 2017. "Socio-political prioritization of bioenergy with carbon capture and storage," Energy Policy, Elsevier, vol. 104(C), pages 89-99.
    12. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    13. Ricci, Olivia & Selosse, Sandrine, 2013. "Global and regional potential for bioelectricity with carbon capture and storage," Energy Policy, Elsevier, vol. 52(C), pages 689-698.

Articles

  1. Selosse, Sandrine & Ricci, Olivia & Garabedian, Sabine & Maïzi, Nadia, 2018. "Exploring sustainable energy future in Reunion Island," Utilities Policy, Elsevier, vol. 55(C), pages 158-166.
    See citations under working paper version above.
  2. Selosse, Sandrine & Garabedian, Sabine & Ricci, Olivia & Maïzi, Nadia, 2018. "The renewable energy revolution of reunion island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 99-105.

    Cited by:

    1. Dorotić, Hrvoje & Doračić, Borna & Dobravec, Viktorija & Pukšec, Tomislav & Krajačić, Goran & Duić, Neven, 2019. "Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 109-124.
    2. Gioutsos, Dean Marcus & Blok, Kornelis & van Velzen, Leonore & Moorman, Sjoerd, 2018. "Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe," Applied Energy, Elsevier, vol. 226(C), pages 437-449.
    3. Majidi Nezhad, M. & Groppi, D. & Marzialetti, P. & Fusilli, L. & Laneve, G. & Cumo, F. & Garcia, D. Astiaso, 2019. "Wind energy potential analysis using Sentinel-1 satellite: A review and a case study on Mediterranean islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 499-513.
    4. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    5. Sabine, Garabedian & Avotra, Narindranjanahary & Olivia, Ricci & Sandrine, Selosse, 2020. "A macroeconomic evaluation of a carbon tax in overseas territories: A CGE model for Reunion Island," Energy Policy, Elsevier, vol. 147(C).
    6. Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera & Philipp Blechinger & Sarah Berendes & Estefanía Caamaño & Enrique García-Alcalde, 2020. "Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz," Sustainability, MDPI, Open Access Journal, vol. 12(6), pages 1-47, March.
    7. Alves, M. & Segurado, R. & Costa, M., 2020. "On the road to 100% renewable energy systems in isolated islands," Energy, Elsevier, vol. 198(C).
    8. Guillermo Valencia Ochoa & Jose Nunez Alvarez & Carlos Acevedo, 2019. "Research Evolution on Renewable Energies Resources from 2007 to 2017: A Comparative Study on Solar, Geothermal, Wind and Biomass Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 242-253.
    9. Majidi Nezhad, M. & Heydari, A. & Groppi, D. & Cumo, F. & Astiaso Garcia, D., 2020. "Wind source potential assessment using Sentinel 1 satellite and a new forecasting model based on machine learning: A case study Sardinia islands," Renewable Energy, Elsevier, vol. 155(C), pages 212-224.
    10. Manfredi Crainz & Domenico Curto & Vincenzo Franzitta & Sonia Longo & Francesco Montana & Rossano Musca & Eleonora Riva Sanseverino & Enrico Telaretti, 2019. "Flexibility Services to Minimize the Electricity Production from Fossil Fuels. A Case Study in a Mediterranean Small Island," Energies, MDPI, Open Access Journal, vol. 12(18), pages 1-38, September.
    11. Mafalda M. Miranda & Jasmin Raymond & Chrystel Dezayes, 2020. "Uncertainty and Risk Evaluation of Deep Geothermal Energy Source for Heat Production and Electricity Generation in Remote Northern Regions," Energies, MDPI, Open Access Journal, vol. 13(16), pages 1-35, August.

  3. Selosse, Sandrine & Ricci, Olivia, 2017. "Carbon capture and storage: Lessons from a storage potential and localization analysis," Applied Energy, Elsevier, vol. 188(C), pages 32-44.

    Cited by:

    1. d'Amore, Federico & Mocellin, Paolo & Vianello, Chiara & Maschio, Giuseppe & Bezzo, Fabrizio, 2018. "Economic optimisation of European supply chains for CO2 capture, transport and sequestration, including societal risk analysis and risk mitigation measures," Applied Energy, Elsevier, vol. 223(C), pages 401-415.
    2. Tamaki, Tetsuya & Nozawa, Wataru & Managi, Shunsuke, 2017. "Evaluation of the ocean ecosystem: Climate change modelling with backstop technologies," Applied Energy, Elsevier, vol. 205(C), pages 428-439.
    3. Guangxiao Hu & Xiaoming Ma & Junping Ji, 2017. "A Stochastic Optimization Model for Carbon Mitigation Path under Demand Uncertainty of the Power Sector in Shenzhen, China," Sustainability, MDPI, Open Access Journal, vol. 9(11), pages 1-12, October.
    4. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
    5. Liu, Lirong & Huang, Guohe & Baetz, Brian & Zhang, Kaiqiang, 2018. "Environmentally-extended input-output simulation for analyzing production-based and consumption-based industrial greenhouse gas mitigation policies," Applied Energy, Elsevier, vol. 232(C), pages 69-78.
    6. Fan, Jing-Li & Shen, Shuo & Wei, Shi-Jie & Xu, Mao & Zhang, Xian, 2020. "Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment," Applied Energy, Elsevier, vol. 279(C).
    7. Lee, Jui-Yuan, 2017. "A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector," Applied Energy, Elsevier, vol. 198(C), pages 12-20.
    8. Mitavachan Hiremath & Peter Viebahn & Sascha Samadi, 2021. "An Integrated Comparative Assessment of Coal-Based Carbon Capture and Storage (CCS) Vis-à-Vis Renewable Energies in India’s Low Carbon Electricity Transition Scenarios," Energies, MDPI, Open Access Journal, vol. 14(2), pages 1-28, January.
    9. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    10. Tamaki, Tetsuya & Nozawa, Wataru & Managi, Shunsuke, 2017. "Evaluation of the ocean ecosystem: climate change modelling with backstop technology," MPRA Paper 80549, University Library of Munich, Germany.
    11. Lin, Boqiang & Jia, Zhijie, 2019. "Impacts of carbon price level in carbon emission trading market," Applied Energy, Elsevier, vol. 239(C), pages 157-170.
    12. Roussanaly, S. & Aasen, A. & Anantharaman, R. & Danielsen, B. & Jakobsen, J. & Heme-De-Lacotte, L. & Neji, G. & Sødal, A. & Wahl, P.E. & Vrana, T.K. & Dreux, R., 2019. "Offshore power generation with carbon capture and storage to decarbonise mainland electricity and offshore oil and gas installations: A techno-economic analysis," Applied Energy, Elsevier, vol. 233, pages 478-494.
    13. Wegner, Marie-Sophie & Hall, Stephen & Hardy, Jeffrey & Workman, Mark, 2017. "Valuing energy futures; a comparative analysis of value pools across UK energy system scenarios," Applied Energy, Elsevier, vol. 206(C), pages 815-828.
    14. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.

  4. Legendre, Bérangère & Ricci, Olivia, 2015. "Measuring fuel poverty in France: Which households are the most fuel vulnerable?," Energy Economics, Elsevier, vol. 49(C), pages 620-628.
    See citations under working paper version above.
  5. Selosse, Sandrine & Ricci, Olivia, 2014. "Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model," Energy, Elsevier, vol. 76(C), pages 967-975.

    Cited by:

    1. Bhave, Amit & Taylor, Richard H.S. & Fennell, Paul & Livingston, William R. & Shah, Nilay & Dowell, Niall Mac & Dennis, John & Kraft, Markus & Pourkashanian, Mohammed & Insa, Mathieu & Jones, Jenny & , 2017. "Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets," Applied Energy, Elsevier, vol. 190(C), pages 481-489.
    2. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, Open Access Journal, vol. 11(9), pages 1-45, September.
    3. Emmanuel Hache & Gondia Sokhna Seck & Marine Simoën & Clément Bonnet & Samuel Carcanague, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Post-Print hal-02025059, HAL.
    4. Lehtveer, Mariliis & Fridahl, Mathias, 2020. "Managing variable renewables with biomass in the European electricity system: Emission targets and investment preferences," Energy, Elsevier, vol. 213(C).
    5. Guo, Yingjian & Hawkes, Adam, 2019. "The impact of demand uncertainties and China-US natural gas tariff on global gas trade," Energy, Elsevier, vol. 175(C), pages 205-217.
    6. Ma, Chunyan & Wang, Nan & Chen, Yifeng & Khokarale, Santosh Govind & Bui, Thai Q. & Weiland, Fredrik & Lestander, Torbjörn A. & Rudolfsson, Magnus & Mikkola, Jyri-Pekka & Ji, Xiaoyan, 2020. "Towards negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine," Applied Energy, Elsevier, vol. 279(C).
    7. Pour, Nasim & Webley, Paul A. & Cook, Peter J., 2018. "Opportunities for application of BECCS in the Australian power sector," Applied Energy, Elsevier, vol. 224(C), pages 615-635.
    8. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS," Applied Energy, Elsevier, vol. 157(C), pages 255-266.
    9. Vassilis Stavrakas & Niki-Artemis Spyridaki & Alexandros Flamos, 2018. "Striving towards the Deployment of Bio-Energy with Carbon Capture and Storage (BECCS): A Review of Research Priorities and Assessment Needs," Sustainability, MDPI, Open Access Journal, vol. 10(7), pages 1-27, June.
    10. Hagos, Dejene Assefa & Gebremedhin, Alemayehu & Bolkesjø, Torjus Folsland, 2017. "The prospects of bioenergy in the future energy system of Inland Norway," Energy, Elsevier, vol. 121(C), pages 78-91.
    11. Fridahl, Mathias, 2017. "Socio-political prioritization of bioenergy with carbon capture and storage," Energy Policy, Elsevier, vol. 104(C), pages 89-99.
    12. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    13. Lee, Hwarang & Eom, Jiyong & Cho, Cheolhung & Koo, Yoonmo, 2019. "A bottom-up model of industrial energy system with positive mathematical programming," Energy, Elsevier, vol. 173(C), pages 679-690.

  6. Ricci, Olivia & Selosse, Sandrine, 2013. "Global and regional potential for bioelectricity with carbon capture and storage," Energy Policy, Elsevier, vol. 52(C), pages 689-698.

    Cited by:

    1. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).
    2. Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, Open Access Journal, vol. 7(8), pages 1-30, August.
    3. Selosse, Sandrine & Ricci, Olivia, 2017. "Carbon capture and storage: Lessons from a storage potential and localization analysis," Applied Energy, Elsevier, vol. 188(C), pages 32-44.
    4. Fujii, Hidemichi & Managi, Shunsuke, 2015. "Optimal production resource reallocation for CO2 emissions reduction in manufacturing sectors," MPRA Paper 64703, University Library of Munich, Germany.
    5. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2015. "Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 157(C), pages 229-244.
    6. Höller, Samuel & Viebahn, Peter, 2016. "Facing the uncertainty of CO2 storage capacity in China by developing different storage scenarios," Energy Policy, Elsevier, vol. 89(C), pages 64-73.
    7. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    8. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2014. "Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 117(C), pages 62-75.
    9. Peter Viebahn & Daniel Vallentin & Samuel Höller, 2015. "Integrated Assessment of Carbon Capture and Storage (CCS) in South Africa’s Power Sector," Energies, MDPI, Open Access Journal, vol. 8(12), pages 1-27, December.
    10. Postic, Sebastien & Selosse, Sandrine & Maïzi, Nadia, 2017. "Energy contribution to Latin American INDCs: Analyzing sub-regional trends with a TIMES model," Energy Policy, Elsevier, vol. 101(C), pages 170-184.
    11. Pour, Nasim & Webley, Paul A. & Cook, Peter J., 2018. "Opportunities for application of BECCS in the Australian power sector," Applied Energy, Elsevier, vol. 224(C), pages 615-635.
    12. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS," Applied Energy, Elsevier, vol. 157(C), pages 255-266.
    13. Lyrio de Oliveira, Lucas & García Kerdan, Iván & de Oliveira Ribeiro, Celma & Oller do Nascimento, Claudio Augusto & Rego, Erik Eduardo & Giarola, Sara & Hawkes, Adam, 2020. "Modelling the technical potential of bioelectricity production under land use constraints: A multi-region Brazil case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    14. Selosse, Sandrine & Ricci, Olivia, 2014. "Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model," Energy, Elsevier, vol. 76(C), pages 967-975.

  7. Olivia Ricci & Sandrine Selosse, 2013. "A cost analysis of the Copenhagen emission reduction pledges," Economics Bulletin, AccessEcon, vol. 33(1), pages 764-771.

    Cited by:

    1. Selosse, Sandrine & Ricci, Olivia, 2014. "Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model," Energy, Elsevier, vol. 76(C), pages 967-975.

  8. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.

    Cited by:

    1. Selosse, Sandrine & Ricci, Olivia, 2017. "Carbon capture and storage: Lessons from a storage potential and localization analysis," Applied Energy, Elsevier, vol. 188(C), pages 32-44.
    2. Lee, Jui-Yuan & Tan, Raymond R. & Chen, Cheng-Liang, 2014. "A unified model for the deployment of carbon capture and storage," Applied Energy, Elsevier, vol. 121(C), pages 140-148.
    3. Lee, Jui-Yuan, 2017. "A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector," Applied Energy, Elsevier, vol. 198(C), pages 12-20.
    4. Lopatta, Kerstin & Kaspereit, Thomas, 2014. "The cross-section of returns, benchmark model parameters, and idiosyncratic volatility of nuclear energy firms after Fukushima Daiichi," Energy Economics, Elsevier, vol. 41(C), pages 125-136.
    5. Martínez Arranz, Alfonso, 2015. "Carbon capture and storage: Frames and blind spots," Energy Policy, Elsevier, vol. 82(C), pages 249-259.

  9. Ricci, Olivia, 2012. "Providing adequate economic incentives for bioenergies with CO2 capture and geological storage," Energy Policy, Elsevier, vol. 44(C), pages 362-373.
    See citations under working paper version above.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 5 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ENE: Energy Economics (5) 2013-06-09 2014-09-05 2014-09-05 2016-03-23 2018-12-17. Author is listed
  2. NEP-ENV: Environmental Economics (3) 2013-06-09 2014-09-05 2018-12-17
  3. NEP-EUR: Microeconomic European Issues (2) 2014-09-05 2016-03-23
  4. NEP-DCM: Discrete Choice Models (1) 2016-03-23
  5. NEP-REG: Regulation (1) 2016-03-23

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Olivia Ricci should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.