IDEAS home Printed from https://ideas.repec.org/a/zib/zbnwcm/v3y2019i2p11-13.html
   My bibliography  Save this article

Sustainable Water Treatment Management

Author

Listed:
  • Md. Nazmul Aunsary

    (Master Program of Green Technology for Sustainability, Nanhua University, Taiwan, No. 55 Sec.1 Nanhua Rd. Dalin Township Chiayi, 622 Taiwan.)

  • Bo-Ching Chen

    (Dean of Science Faculty, Nanhua University, Taiwan)

Abstract

Water, an essential element for life, makes up 71% of the planet’s surface. Paradoxically, 3.5% of this water is suitable for human consumption and other use, to be found in lakes, rivers, and springs to supply our physical and hygienic needs. Only 1% is available for drinking. The remaining 97.5%, located in seas and oceans, is not drinkable due to its high level of salinity. Raw water goes through a special method by dosing lime, bleaching powder and ferrous sulfate for treated water. On the other hand, Reverse, Osmosis is a membrane-based method technology to purify water from oceans and no need extra chemical. Reverse Osmosis technology is employed to get rid of dissolved solids, color, organic contaminants, and nitrate from the feed stream. It is low costing, energy-efficient also produce blue current. There is 1 square meter and with only 30% of its surface covered with Nano port we could reach 1 megawatt it’s enough to run fifty thousand standard energy-saving light. In this method, we can get available drinkable water also producing blue current. There is no other sustainable method all over the world to produce current without sunlight, turbine, or fossil fuel. Water desalination is the only way to get pure water and produce electric current both with low costing.

Suggested Citation

  • Md. Nazmul Aunsary & Bo-Ching Chen, 2019. "Sustainable Water Treatment Management," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 3(2), pages 11-13, October.
  • Handle: RePEc:zib:zbnwcm:v:3:y:2019:i:2:p:11-13
    DOI: 10.26480/wcm.02.2019.11.13
    as

    Download full text from publisher

    File URL: https://www.watconman.org/download/5577/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/wcm.02.2019.11.13?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Katz & Arkadiy Shafran, 2019. "Transboundary Exchanges of Renewable Energy and Desalinated Water in the Middle East," Energies, MDPI, vol. 12(8), pages 1-21, April.
    2. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    3. Pugsley, Adrian & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn, 2016. "Global applicability of solar desalination," Renewable Energy, Elsevier, vol. 88(C), pages 200-219.
    4. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Qin & Du, Qiang & Razzaq, Asif & Shang, Yunfeng, 2022. "How volatility in green financing, clean energy, and green economic practices derive sustainable performance through ESG indicators? A sectoral study of G7 countries," Resources Policy, Elsevier, vol. 75(C).
    2. Chen Wang & Yizi Shang & Majid Khayatnezhad, 2021. "Fuzzy Stress-based Modeling for Probabilistic Irrigation Planning Using Copula-NSPSO," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4943-4959, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ihsan Ullah & Mohammad G. Rasul, 2018. "Recent Developments in Solar Thermal Desalination Technologies: A Review," Energies, MDPI, vol. 12(1), pages 1-31, December.
    2. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. David Katz & Arkadiy Shafran, 2019. "Transboundary Exchanges of Renewable Energy and Desalinated Water in the Middle East," Energies, MDPI, vol. 12(8), pages 1-21, April.
    4. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    5. Gorjian, Shiva & Ghobadian, Barat, 2015. "Solar desalination: A sustainable solution to water crisis in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 571-584.
    6. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    8. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Sayyaadi, Hoseyn & Ghorbani, Ghadir, 2018. "Conceptual design and optimization of a small-scale dual power-desalination system based on the Stirling prime-mover," Applied Energy, Elsevier, vol. 223(C), pages 457-471.
    10. Arabnejad, Hossein & Mirzaei, Farhad & Noory, Hamideh, 2021. "Greenhouse cultivation feasibility using condensation irrigation (studied plant: Basil)," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Gakkhar, Nikhil & Soni, M.S. & Jakhar, Sanjeev, 2016. "Second law thermodynamic study of solar assisted distillation system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 519-535.
    12. Al-Nimr, Moh’d A. & Al-Ammari, Wahib A., 2020. "A novel hybrid and interactive solar system consists of Stirling engine ̸vacuum evaporator ̸thermoelectric cooler for electricity generation and water distillation," Renewable Energy, Elsevier, vol. 153(C), pages 1053-1066.
    13. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    14. Hamid, Mohammed O.A. & Zhang, Bo & Yang, Luopeng, 2014. "Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater," Energy, Elsevier, vol. 76(C), pages 241-253.
    15. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    16. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    17. Yong-Joon Jun & Young-Hak Song & Kyung-Soon Park, 2017. "A Study on the Prediction of the Optimum Performance of a Small-Scale Desalination System Using Solar Heat Energy," Energies, MDPI, vol. 10(9), pages 1-16, August.
    18. Lidia Roca & Jorge A. Sánchez & Francisco Rodríguez & Javier Bonilla & Alberto De la Calle & Manuel Berenguel, 2016. "Predictive Control Applied to a Solar Desalination Plant Connected to a Greenhouse with Daily Variation of Irrigation Water Demand," Energies, MDPI, vol. 9(3), pages 1-17, March.
    19. Alhazmy, Majed M., 2014. "Economic and thermal feasibility of multi stage flash desalination plant with brine–feed mixing and cooling," Energy, Elsevier, vol. 76(C), pages 1029-1035.
    20. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbnwcm:v:3:y:2019:i:2:p:11-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://www.watconman.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.