IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v1y2009p55-75.html
   My bibliography  Save this article

Basic analytical capabilities of the CCR-DEA model

Author

Listed:
  • Bogusław Guzik

Abstract

W artykule omówiono możliwości analityczne podstawowego i klasycznego profilu metod DEA – model CCR. Scharakteryzowano m.in. tradycyjne i stosowane w Polsce sposoby ustalania technologii optymalnej i benchmarkingu dla obiektów nieefektywnych. Zaproponowano także, między innymi, „ekonomiczną” interpretację rozwiązania optymalnego zadania oraz sposób ustalania struktury technologii docelowej.

Suggested Citation

  • Bogusław Guzik, 2009. "Basic analytical capabilities of the CCR-DEA model," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(1), pages 55-75.
  • Handle: RePEc:wut:journl:v:1:y:2009:p:55-75
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/122%20-%20published.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Thanassoulis, E. & Dyson, R. G., 1992. "Estimating preferred target input-output levels using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 56(1), pages 80-97, January.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Tofallis, C., 1996. "Improving discernment in DEA using profiling," Omega, Elsevier, vol. 24(3), pages 361-364, June.
    5. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    6. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    7. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    8. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Pyra & Mieczyslaw Adamowicz, 2021. "Assessment of the Sector of Public Vocational Universities in Poland from the Point of View of their Efficiency," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 21-43.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    2. Yung-ho Chiu & Chin-wei Huang & Chung-te Ting, 2012. "A non-radial measure of different systems for Taiwanese tourist hotels’ efficiency assessment," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 45-63, March.
    3. Bogusław Guzik, 2008. "CCR-DP model with dominated inflation function of inputs," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 18(4), pages 29-46.
    4. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    5. Lo, Shih-Fang & Lu, Wen-Min, 2009. "An integrated performance evaluation of financial holding companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 198(1), pages 341-350, October.
    6. Suzuki, Soushi & Nijkamp, Peter, 2016. "An evaluation of energy-environment-economic efficiency for EU, APEC and ASEAN countries: Design of a Target-Oriented DFM model with fixed factors in Data Envelopment Analysis," Energy Policy, Elsevier, vol. 88(C), pages 100-112.
    7. Zhu, Joe, 2001. "Super-efficiency and DEA sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 129(2), pages 443-455, March.
    8. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    9. Tran, Trung Hieu & Mao, Yong & Nathanail, Paul & Siebers, Peer-Olaf & Robinson, Darren, 2019. "Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis," Omega, Elsevier, vol. 85(C), pages 156-165.
    10. Chen, Chien-Ming, 2013. "Super efficiencies or super inefficiencies? Insights from a joint computation model for slacks-based measures in DEA," European Journal of Operational Research, Elsevier, vol. 226(2), pages 258-267.
    11. Perrigot, Rozenn & Barros, Carlos Pestana, 2008. "Technical efficiency of French retailers," Journal of Retailing and Consumer Services, Elsevier, vol. 15(4), pages 296-305.
    12. Carlos Pestana Barros & Maria Teresa Medeiros Garcia, 2006. "Performance Evaluation of Pension Funds Management Companies with Data Envelopment Analysis," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 9(2), pages 165-188, September.
    13. Bogusław Guzik, 2007. "Including substitution of inputs in DEA models," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 17(3-4), pages 71-92.
    14. Tingting Liu & Zichen Zheng & Yuneng Du, 0. "Evaluation on regional science and technology resources allocation in China based on the zero sum gains data envelopment analysis," Journal of Intelligent Manufacturing, Springer, vol. 0, pages 1-9.
    15. Po, Rung-Wei & Guh, Yuh-Yuan & Yang, Miin-Shen, 2009. "A new clustering approach using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 199(1), pages 276-284, November.
    16. Victoria Wojcik & Harald Dyckhoff & Marcel Clermont, 2019. "Is data envelopment analysis a suitable tool for performance measurement and benchmarking in non-production contexts?," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 559-595, December.
    17. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    18. Ghosh, Santosh & Yadav, Vinod Kumar & Mukherjee, Vivekananda, 2018. "Evaluation of cumulative impact of partial shading and aerosols on different PV array topologies through combined Shannon's entropy and DEA," Energy, Elsevier, vol. 144(C), pages 765-775.
    19. Rashidi, Kamran & Cullinane, Kevin, 2019. "Evaluating the sustainability of national logistics performance using Data Envelopment Analysis," Transport Policy, Elsevier, vol. 74(C), pages 35-46.
    20. Maria Portela & Emmanuel Thanassoulis, 2006. "Zero weights and non-zero slacks: Different solutions to the same problem," Annals of Operations Research, Springer, vol. 145(1), pages 129-147, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:1:y:2009:p:55-75. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.