IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v12y2009i04ns0219024909005324.html
   My bibliography  Save this article

Pricing Of Exotic Energy Derivatives Based On Arithmetic Spot Models

Author

Listed:
  • FRED ESPEN BENTH

    (Centre of Mathematics for Applications (CMA), University of Oslo, P.O. Box 1053, Blindern, N0316 Oslo, Norway)

  • RODWELL KUFAKUNESU

    (University of Pretoria, Department of Mathematics and Applied Mathematics, Pretoria 0002, South Africa)

Abstract

Based on a non-Gaussian Ornstein–Uhlenbeck model for energy spot, we derive prices for Asian and spread options using Fourier techniques. The option prices are expressed in terms of the Fourier transform of the payoff function and the characteristic functions of the driving noises, being independent increment processes. In many relevant situations, these functions are explicitly available, and fast Fourier transform can be used for efficient numerical valuation. The arithmetic nature of our model implies that only a one-dimensional Fourier transform is required in the computation of the price, contrary to geometric models where transformation along both underlying variables is necessary.

Suggested Citation

  • Fred Espen Benth & Rodwell Kufakunesu, 2009. "Pricing Of Exotic Energy Derivatives Based On Arithmetic Spot Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 491-506.
  • Handle: RePEc:wsi:ijtafx:v:12:y:2009:i:04:n:s0219024909005324
    DOI: 10.1142/S0219024909005324
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024909005324
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024909005324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piccirilli, Marco & Schmeck, Maren Diane & Vargiolu, Tiziano, 2021. "Capturing the power options smile by an additive two-factor model for overlapping futures prices," Energy Economics, Elsevier, vol. 95(C).
    2. Cartea, Álvaro & González-Pedraz, Carlos, 2012. "How much should we pay for interconnecting electricity markets? A real options approach," Energy Economics, Elsevier, vol. 34(1), pages 14-30.
    3. Bannör, Karl & Kiesel, Rüdiger & Nazarova, Anna & Scherer, Matthias, 2016. "Parametric model risk and power plant valuation," Energy Economics, Elsevier, vol. 59(C), pages 423-434.
    4. Benth, Fred Espen & Kiesel, Rüdiger & Nazarova, Anna, 2012. "A critical empirical study of three electricity spot price models," Energy Economics, Elsevier, vol. 34(5), pages 1589-1616.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Angelica Gianfreda, 2010. "Volatility and Volume Effects in European Electricity Spot Markets," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(1‐2), pages 47-63, February.
    3. Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
    4. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    5. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    6. Joanna Janczura & Aleksander Weron, 2008. "Modelling energy forward prices," HSC Research Reports HSC/08/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    7. Herrera, Rodrigo & González, Nicolás, 2014. "The modeling and forecasting of extreme events in electricity spot markets," International Journal of Forecasting, Elsevier, vol. 30(3), pages 477-490.
    8. María Del Carmen Ruiz-Abellón & Antonio Gabaldón & Antonio Guillamón, 2016. "Dependency-Aware Clustering of Time Series and Its Application on Energy Markets," Energies, MDPI, vol. 9(10), pages 1-22, October.
    9. Miguel Ángel Rodríguez López & Diego Rodríguez Rodríguez, 2024. "La aplicación de datos masivos en economía de la energía: una revisión," Working Papers 2024-08, FEDEA.
    10. Michael Kostmann & Wolfgang K. Härdle, 2019. "Forecasting in Blockchain-Based Local Energy Markets," Energies, MDPI, vol. 12(14), pages 1-27, July.
    11. Rafał Weron, 2009. "Heavy-tails and regime-switching in electricity prices," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 457-473, July.
    12. Chi-Keung Woo, Ira Horowitz, Brian Horii, Ren Orans, and Jay Zarnikau, 2012. "Blowing in the Wind: Vanishing Payoffs of a Tolling Agreement for Natural-gas-fired Generation of Electricity in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    13. Füss, Roland & Mahringer, Steffen & Prokopczuk, Marcel, 2015. "Electricity derivatives pricing with forward-looking information," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 34-57.
    14. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    15. Florian Ziel & Rick Steinert & Sven Husmann, 2014. "Efficient Modeling and Forecasting of the Electricity Spot Price," Papers 1402.7027, arXiv.org, revised Oct 2014.
    16. Rafal Weron & Adam Misiorek, 2006. "Short-term electricity price forecasting with time series models: A review and evaluation," HSC Research Reports HSC/06/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    17. Szymon Borak & Rafał Weron, . "A semiparametric factor model for electricity forward curve dynamics," Journal of Energy Markets, Journal of Energy Markets.
    18. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    19. Kristiansen, Tarjei, 2012. "Forecasting Nord Pool day-ahead prices with an autoregressive model," Energy Policy, Elsevier, vol. 49(C), pages 328-332.
    20. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:12:y:2009:i:04:n:s0219024909005324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.