IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v08y2005i06ns0219024905003207.html
   My bibliography  Save this article

Measuring The Memory Parameter On Several Transformations Of Asset Returns

Author

Listed:
  • L. A. GIL-ALANA

    (University of Navarre, Campus Universitario, Faculty of Economics, Edificio Biblioteca, Entrada Este E-31080 Pamplona, Spain)

Abstract

The issue in this paper is to measure the memory parameter in several transformations of historical data of asset returns in the UK (xt) by means of fractionally integrated techniques. We use both parametric and semiparametric methods, and the results show that the power transformations of the absolute values of the returns (i.e., |xt|θ, with θ

Suggested Citation

  • L. A. Gil-Alana, 2005. "Measuring The Memory Parameter On Several Transformations Of Asset Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(06), pages 675-691.
  • Handle: RePEc:wsi:ijtafx:v:08:y:2005:i:06:n:s0219024905003207
    DOI: 10.1142/S0219024905003207
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024905003207
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024905003207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    2. Peter M Robinson & Paolo Zaffaroni, 1997. "Modelling Nonlinearity and Long Memory in Time Series - (Now published in 'Nonlinear Dynamics and Time Series', C D Cutler and D T Kaplan (eds), Fields Institute Communications, 11 (1997), pp.61-170.)," STICERD - Econometrics Paper Series 319, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    2. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    3. Arun Kumar & Palaniappan Vellaisamy, 2012. "Fractional Normal Inverse Gaussian Process," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 263-283, June.
    4. Timothy DeLise, 2021. "Neural Options Pricing," Papers 2105.13320, arXiv.org.
    5. Victor Olkhov, 2023. "Market-Based Probability of Stock Returns," Papers 2302.07935, arXiv.org, revised Dec 2024.
    6. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
    7. Thomas Theobald, 2015. "Agent-based risk management – a regulatory approach to financial markets," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 42(5), pages 780-820, October.
    8. Andria, Joseph & di Tollo, Giacomo & Kalda, Jaan, 2022. "The predictive power of power-laws: An empirical time-arrow based investigation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Lux, Thomas & Kaizoji, Taisei, 2004. "Forecasting volatility and volume in the Tokyo stock market: The advantage of long memory models," Economics Working Papers 2004-05, Christian-Albrechts-University of Kiel, Department of Economics.
    10. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    11. Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2021. "High-Frequency Volatility Forecasting of US Housing Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 62(2), pages 283-317, February.
    12. Phooi M’ng, Jacinta Chan, 2018. "Dynamically Adjustable Moving Average (AMA’) technical analysis indicator to forecast Asian Tigers’ futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 336-345.
    13. Lux, Thomas, 2008. "The Markov-Switching Multifractal Model of Asset Returns: GMM Estimation and Linear Forecasting of Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 194-210, April.
    14. Paul Eitelman & Justin Vitanza, 2008. "A non-random walk revisited: short- and long-term memory in asset prices," International Finance Discussion Papers 956, Board of Governors of the Federal Reserve System (U.S.).
    15. Caraiani, Petre & Haven, Emmanuel, 2015. "Evidence of multifractality from CEE exchange rates against Euro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 395-407.
    16. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
    17. Kyaw, NyoNyo A. & Los, Cornelis A. & Zong, Sijing, 2006. "Persistence characteristics of Latin American financial markets," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 269-290, July.
    18. Mensi, Walid & Hamdi, Atef & Shahzad, Syed Jawad Hussain & Shafiullah, Muhammad & Al-Yahyaee, Khamis Hamed, 2018. "Modeling cross-correlations and efficiency of Islamic and conventional banks from Saudi Arabia: Evidence from MF-DFA and MF-DXA approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 576-589.
    19. Máté, Gabriell & Heermann, Dieter W., 2014. "Persistence intervals of fractals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 252-259.
    20. R. Fernández-Pascual & M. Ruiz-Medina & J. Angulo, 2003. "Multiscale estimation of processes related to the fractional Black-Scholes equation," Computational Statistics, Springer, vol. 18(3), pages 401-415, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:08:y:2005:i:06:n:s0219024905003207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.