IDEAS home Printed from https://ideas.repec.org/p/cep/stiecm/319.html
   My bibliography  Save this paper

Modelling Nonlinearity and Long Memory in Time Series - (Now published in 'Nonlinear Dynamics and Time Series', C D Cutler and D T Kaplan (eds), Fields Institute Communications, 11 (1997), pp.61-170.)

Author

Listed:
  • Peter M Robinson
  • Paolo Zaffaroni

Abstract

We discuss models that impart a form of long memory in raw time series xt or instantaneous functions thereof, in particular . on the basis of a linear or nonlinear model. The capacity of linear models for xt to imply long-memory in nonlinear functions of xt is discussed. Empirical observation motivates investigation of models which lead to short memory, or even white noise, xt but a long memory . One such model which we describe is based on the long memory generalized ARCH model introduced by Robinson (1991b). The other is an extension of the nonlinear moving average model of Robinson (1977).

Suggested Citation

  • Peter M Robinson & Paolo Zaffaroni, 1997. "Modelling Nonlinearity and Long Memory in Time Series - (Now published in 'Nonlinear Dynamics and Time Series', C D Cutler and D T Kaplan (eds), Fields Institute Communications, 11 (1997), pp.61-170.)," STICERD - Econometrics Paper Series 319, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stiecm:319
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    2. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    3. L. A. Gil-Alana, 2005. "Measuring The Memory Parameter On Several Transformations Of Asset Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(06), pages 675-691.

    More about this item

    Keywords

    Long memory; ARCH; nonlinear moving average. JEL No.: C22;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://sticerd.lse.ac.uk/_new/publications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.