IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v37y2017i12p2264-2275.html
   My bibliography  Save this article

Not in My Backyard: CCS Sites and Public Perception of CCS

Author

Listed:
  • Carola Braun

Abstract

Carbon capture and storage (CCS) is a technology that counteracts climate change by capturing atmospheric emissions of CO2 from human activities, storing them in geological formations underground. However, CCS also involves major risks and side effects, and faces strong public opposition. The whereabouts of 408 potential CCS sites in Germany were released in 2011. Using detailed survey data on the public perception of CCS, this study quantifies how living close to a potential storage site affects the acceptance of CCS. It also analyzes the influence of other regional characteristics on the acceptance of CCS. The study finds that respondents who live close to a potential CCS site have significantly lower acceptance rates than those who do not. Living in a coal‐mining region also markedly decreases acceptance.

Suggested Citation

  • Carola Braun, 2017. "Not in My Backyard: CCS Sites and Public Perception of CCS," Risk Analysis, John Wiley & Sons, vol. 37(12), pages 2264-2275, December.
  • Handle: RePEc:wly:riskan:v:37:y:2017:i:12:p:2264-2275
    DOI: 10.1111/risa.12793
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12793
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rachel M. Krause & Sanya R. Carley & David C. Warren & John A. Rupp & John D. Graham, 2014. "“Not in (or Under) My Backyard”: Geographic Proximity and Public Acceptance of Carbon Capture and Storage Facilities," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 529-540, March.
    2. Frey, Bruno S & Oberholzer-Gee, Felix, 1997. "The Cost of Price Incentives: An Empirical Analysis of Motivation Crowding-Out," American Economic Review, American Economic Association, vol. 87(4), pages 746-755, September.
    3. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    4. Iosif Botetzagias & Chrisovaladis Malesios & Anthi Kolokotroni & Yiannis Moysiadis, 2015. "The role of NIMBY in opposing the siting of wind farms: evidence from Greece," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(2), pages 229-251, February.
    5. Duan, Hongxia, 2010. "The public perspective of carbon capture and storage for CO2 emission reductions in China," Energy Policy, Elsevier, vol. 38(9), pages 5281-5289, September.
    6. Wolsink, Maarten, 2000. "Wind power and the NIMBY-myth: institutional capacity and the limited significance of public support," Renewable Energy, Elsevier, vol. 21(1), pages 49-64.
    7. Yang, Lin & Zhang, Xian & McAlinden, Karl J., 2016. "The effect of trust on people's acceptance of CCS (carbon capture and storage) technologies: Evidence from a survey in the People's Republic of China," Energy, Elsevier, vol. 96(C), pages 69-79.
    8. Michael Siegrist, 2000. "The Influence of Trust and Perceptions of Risks and Benefits on the Acceptance of Gene Technology," Risk Analysis, John Wiley & Sons, vol. 20(2), pages 195-204, April.
    9. Huijts, Nicole M.A. & Midden, Cees J.H. & Meijnders, Anneloes L., 2007. "Social acceptance of carbon dioxide storage," Energy Policy, Elsevier, vol. 35(5), pages 2780-2789, May.
    10. Visschers, Vivianne H.M. & Keller, Carmen & Siegrist, Michael, 2011. "Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power stations: Investigating an explanatory model," Energy Policy, Elsevier, vol. 39(6), pages 3621-3629, June.
    11. L׳Orange Seigo, Selma & Dohle, Simone & Siegrist, Michael, 2014. "Public perception of carbon capture and storage (CCS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 848-863.
    12. Bart W. Terwel & Dancker D.L. Daamen, 2012. "Initial public reactions to carbon capture and storage (CCS): differentiating general and local views," Climate Policy, Taylor & Francis Journals, vol. 12(3), pages 288-300, May.
    13. Hung‐Chih Hung & Tzu‐Wen Wang, 2011. "Determinants and Mapping of Collective Perceptions of Technological Risk: The Case of the Second Nuclear Power Plant in Taiwan," Risk Analysis, John Wiley & Sons, vol. 31(4), pages 668-683, April.
    14. Kraeusel, Jonas & Möst, Dominik, 2012. "Carbon Capture and Storage on its way to large-scale deployment: Social acceptance and willingness to pay in Germany," Energy Policy, Elsevier, vol. 49(C), pages 642-651.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hilary S. Boudet & Chad M. Zanocco & Peter D. Howe & Christopher E. Clarke, 2018. "The Effect of Geographic Proximity to Unconventional Oil and Gas Development on Public Support for Hydraulic Fracturing," Risk Analysis, John Wiley & Sons, vol. 38(9), pages 1871-1890, September.
    2. Lorraine Whitmarsh & Dimitrios Xenias & Christopher R. Jones, 2019. "Framing effects on public support for carbon capture and storage," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-10, December.
    3. Marilou Jobin & Michael Siegrist, 2020. "Support for the Deployment of Climate Engineering: A Comparison of Ten Different Technologies," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1058-1078, May.
    4. Carola Braun & Christine Merk & Gert Pönitzsch & Katrin Rehdanz & Ulrich Schmidt, 2018. "Public perception of climate engineering and carbon capture and storage in Germany: survey evidence," Climate Policy, Taylor & Francis Journals, vol. 18(4), pages 471-484, April.
    5. Nishwa Iqbal Dar & Syed Zulfiqar Ali Shah & Zeeshan Ahmed, 2021. "Behavioral Cost of Managerial Decisions Under Risk Perception and Culture: A Comparative Study Between the United States and Pakistan," SAGE Open, , vol. 11(3), pages 21582440211, July.
    6. Sara Yasemi & Yasin Khalili & Ali Sanati & Mohammadreza Bagheri, 2023. "Carbon Capture and Storage: Application in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(19), pages 1-32, October.
    7. Xu, Min & Liu, Yong & Cui, Caiyun & Xia, Bo & Ke, Yongjian & Skitmore, Martin, 2023. "Social acceptance of NIMBY facilities: A comparative study between public acceptance and the social license to operate analytical frameworks," Land Use Policy, Elsevier, vol. 124(C).
    8. Farid Karimi, 2021. "Stakeholders’ Risk Perceptions of Decarbonised Energy System: Insights into Patterns of Behaviour," Energies, MDPI, vol. 14(21), pages 1-14, November.
    9. Jeroen C.J.M. van den Bergh & Arild Angelsen & Andrea Baranzini & W.J. Wouter Botzen & Stefano Carattini & Stefan Drews & Tessa Dunlop & Eric Galbraith & Elisabeth Gsottbauer & Richard B. Howarth & Em, 2018. "Parallel tracks towards a global treaty on carbon pricing," Working Papers 2018/12, Institut d'Economia de Barcelona (IEB).
    10. Charles Vlek, 2018. "Induced Earthquakes from Long‐Term Gas Extraction in Groningen, the Netherlands: Statistical Analysis and Prognosis for Acceptable‐Risk Regulation," Risk Analysis, John Wiley & Sons, vol. 38(7), pages 1455-1473, July.
    11. Hurlbert, Margot & Osazuwa-Peters, Mac, 2023. "Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. Huang‐Ting Yan & Yu‐Chin Hsu & Yu‐Hung Chang, 2022. "A multilevel analysis of the determinants of the attitude toward separate cycle paths in Taiwan," Social Science Quarterly, Southwestern Social Science Association, vol. 103(7), pages 1732-1749, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carola Braun & Christine Merk & Gert Pönitzsch & Katrin Rehdanz & Ulrich Schmidt, 2018. "Public perception of climate engineering and carbon capture and storage in Germany: survey evidence," Climate Policy, Taylor & Francis Journals, vol. 18(4), pages 471-484, April.
    2. Yang, Lin & Zhang, Xian & McAlinden, Karl J., 2016. "The effect of trust on people's acceptance of CCS (carbon capture and storage) technologies: Evidence from a survey in the People's Republic of China," Energy, Elsevier, vol. 96(C), pages 69-79.
    3. L׳Orange Seigo, Selma & Dohle, Simone & Siegrist, Michael, 2014. "Public perception of carbon capture and storage (CCS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 848-863.
    4. Perlaviciute, Goda & Steg, Linda, 2014. "Contextual and psychological factors shaping evaluations and acceptability of energy alternatives: Integrated review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 361-381.
    5. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    6. Liu, Bingsheng & Xu, Yinghua & Yang, Yang & Lu, Shijian, 2021. "How public cognition influences public acceptance of CCUS in China: Based on the ABC (affect, behavior, and cognition) model of attitudes," Energy Policy, Elsevier, vol. 156(C).
    7. Jingjing Xie & Yujiao Xian & Guowei Jia, 2023. "An investigation into the public acceptance in China of carbon capture and storage (CCS) technology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.
    8. Nuortimo, Kalle & Härkönen, Janne, 2018. "Opinion mining approach to study media-image of energy production. Implications to public acceptance and market deployment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 210-217.
    9. Farid Karimi, 2021. "Stakeholders’ Risk Perceptions of Decarbonised Energy System: Insights into Patterns of Behaviour," Energies, MDPI, vol. 14(21), pages 1-14, November.
    10. Mueller, Christoph Emanuel, 2020. "Examining the inter-relationships between procedural fairness, trust in actors, risk expectations, perceived benefits, and attitudes towards power grid expansion projects," Energy Policy, Elsevier, vol. 141(C).
    11. Rachel M. Krause & Sanya R. Carley & David C. Warren & John A. Rupp & John D. Graham, 2014. "“Not in (or Under) My Backyard”: Geographic Proximity and Public Acceptance of Carbon Capture and Storage Facilities," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 529-540, March.
    12. Katja Witte, 2021. "Social Acceptance of Carbon Capture and Storage (CCS) from Industrial Applications," Sustainability, MDPI, vol. 13(21), pages 1-29, November.
    13. Kânoğlu-Özkan, Dilge Güldehen & Soytaş, Uğur, 2022. "The social acceptance of shale gas development: Evidence from Turkey," Energy, Elsevier, vol. 239(PC).
    14. Yu, H. & Reiner, D. & Chen, H. & Mi, Z., 2018. "A comparison of public preferences for different low-carbon energy technologies: Support for CCS, nuclear and wind energy in the United Kingdom," Cambridge Working Papers in Economics 1826, Faculty of Economics, University of Cambridge.
    15. Jiang, Kai & Ashworth, Peta, 2021. "The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Soland, Martin & Steimer, Nora & Walter, Götz, 2013. "Local acceptance of existing biogas plants in Switzerland," Energy Policy, Elsevier, vol. 61(C), pages 802-810.
    17. Moon, Won-Ki & Kahlor, Lee Ann & Olson, Hilary Clement, 2020. "Understanding public support for carbon capture and storage policy: The roles of social capital, stakeholder perceptions, and perceived risk/benefit of technology," Energy Policy, Elsevier, vol. 139(C).
    18. Huang, Lei & He, Ruoying & Yang, Qianqi & Chen, Jin & Zhou, Ying & Hammitt, James K. & Lu, Xi & Bi, Jun & Liu, Yang, 2018. "The changing risk perception towards nuclear power in China after the Fukushima nuclear accident in Japan," Energy Policy, Elsevier, vol. 120(C), pages 294-301.
    19. Eric Buah & Lassi Linnanen & Huapeng Wu & Martin A. Kesse, 2020. "Can Artificial Intelligence Assist Project Developers in Long-Term Management of Energy Projects? The Case of CO 2 Capture and Storage," Energies, MDPI, vol. 13(23), pages 1-15, November.
    20. Friedl, Christina & Reichl, Johannes, 2016. "Realizing energy infrastructure projects – A qualitative empirical analysis of local practices to address social acceptance," Energy Policy, Elsevier, vol. 89(C), pages 184-193.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:37:y:2017:i:12:p:2264-2275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.