IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v31y2011i8p1226-1242.html
   My bibliography  Save this article

Critical Review and Uncertainty Analysis of Factors Influencing Influenza Transmission

Author

Listed:
  • Rachael M. Jones

Abstract

Influenza remains a significant threat to public health, yet there is significant uncertainty about the routes of influenza transmission from an infectious source through the environment to a receptor, and their relative risks. Herein, data pertaining to factors that influence the environmental mediation of influenza transmission are critically reviewed, including: frequency, magnitude and size distribution and virus expiration, inactivation rates, environmental and self‐contact rates, and viral transfer efficiencies during contacts. Where appropriate, two‐stage Monte Carlo uncertainty analysis is used to characterize variability and uncertainty in the reported data. Significant uncertainties are present in most factors, due to: limitations in instrumentation or study realism; lack of documentation of data variability; or lack of study. These analyses, and future experimental work, will improve parameterization of influenza transmission and risk models, facilitating more robust characterization of the magnitude and uncertainty in infection risk.

Suggested Citation

  • Rachael M. Jones, 2011. "Critical Review and Uncertainty Analysis of Factors Influencing Influenza Transmission," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1226-1242, August.
  • Handle: RePEc:wly:riskan:v:31:y:2011:i:8:p:1226-1242
    DOI: 10.1111/j.1539-6924.2011.01598.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2011.01598.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2011.01598.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark Nicas & Rachael M. Jones, 2009. "Relative Contributions of Four Exposure Pathways to Influenza Infection Risk," Risk Analysis, John Wiley & Sons, vol. 29(9), pages 1292-1303, September.
    2. Kyoko Shinya & Masahito Ebina & Shinya Yamada & Masao Ono & Noriyuki Kasai & Yoshihiro Kawaoka, 2006. "Influenza virus receptors in the human airway," Nature, Nature, vol. 440(7083), pages 435-436, March.
    3. Timothy R. Julian & Robert A. Canales & James O. Leckie & Alexandria B. Boehm, 2009. "A Model of Exposure to Rotavirus from Nondietary Ingestion Iterated by Simulated Intermittent Contacts," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 617-632, May.
    4. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    5. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Chabrelie & Jade Mitchell & Joan Rose & Duane Charbonneau & Yoshiki Ishida, 2018. "Evaluation of the Influenza Risk Reduction from Antimicrobial Spray Application on Porous Surfaces," Risk Analysis, John Wiley & Sons, vol. 38(7), pages 1502-1517, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachael M. Jones & Elodie Adida, 2011. "Influenza Infection Risk and Predominate Exposure Route: Uncertainty Analysis," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1622-1631, October.
    2. Rachael M. Jones & Elodie Adida, 2013. "Selecting Nonpharmaceutical Interventions for Influenza," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1473-1488, August.
    3. Edward M. Fisher & John D. Noti & William G. Lindsley & Francoise M. Blachere & Ronald E. Shaffer, 2014. "Validation and Application of Models to Predict Facemask Influenza Contamination in Healthcare Settings," Risk Analysis, John Wiley & Sons, vol. 34(8), pages 1423-1434, August.
    4. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    5. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    6. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    7. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    8. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    9. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    10. S. M. Niaz Arifin & Christoph Zimmer & Caroline Trotter & Anaïs Colombini & Fati Sidikou & F. Marc LaForce & Ted Cohen & Reza Yaesoubi, 2019. "Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study," Medical Decision Making, , vol. 39(5), pages 553-567, July.
    11. Nan Zhang & Yuguo Li, 2018. "Transmission of Influenza A in a Student Office Based on Realistic Person-to-Person Contact and Surface Touch Behaviour," IJERPH, MDPI, vol. 15(8), pages 1-20, August.
    12. Domhnall Melly & Emmet McLoughlin & Kelly Maguire, 2023. "Emerging Venue Considerations for Event Management: The Case of Ireland," Tourism and Hospitality, MDPI, vol. 4(1), pages 1-15, March.
    13. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    14. Mirjam Kretzschmar & Rafael T Mikolajczyk, 2009. "Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-8, June.
    15. Elisabetta De Cao & Alessia Melegaro & Rogier Klok & Maarten Postma, 2014. "Optimising Assessments of the Epidemiological Impact in the Netherlands of Paediatric Immunisation with 13-Valent Pneumococcal Conjugate Vaccine Using Dynamic Transmission Modelling," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    16. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).
    17. Richard Pitman & David Fisman & Gregory S. Zaric & Maarten Postma & Mirjam Kretzschmar & John Edmunds & Marc Brisson, 2012. "Dynamic Transmission Modeling," Medical Decision Making, , vol. 32(5), pages 712-721, September.
    18. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    19. Valentina Marziano & Giorgio Guzzetta & Alessia Mammone & Flavia Riccardo & Piero Poletti & Filippo Trentini & Mattia Manica & Andrea Siddu & Antonino Bella & Paola Stefanelli & Patrizio Pezzotti & Ma, 2021. "The effect of COVID-19 vaccination in Italy and perspectives for living with the virus," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    20. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:31:y:2011:i:8:p:1226-1242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.