IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v30y2010i12p1789-1802.html
   My bibliography  Save this article

Evaluation of the Productivity Decrease Risk Due to a Future Increase in Tropical Cyclone Intensity in Japan

Author

Listed:
  • Miguel Esteban
  • Gorka Longarte‐Galnares

Abstract

A number of scientists have recently conducted research that shows that tropical cyclone intensity is likely to increase in the future. This would result in an increase in the damage along with a decrease in economic productivity due to precautionary cessation of the economic activity of the affected areas during the passage of the cyclone. The economic effect of this stop in economic activity is a phenomenon that has not received much attention in the past, and the cumulative effect that it can have on the Japanese economy over the next 75 years has never been evaluated. The starting point for the evaluation of the economic risks is the change in the patterns of tropical cyclone intensity suggested by Knutson and Tuleya.(1) The results obtained show how a significant decrease in the overall productivity of the country could be expected, which could lower GDP by between 6% and 13% by 2085.

Suggested Citation

  • Miguel Esteban & Gorka Longarte‐Galnares, 2010. "Evaluation of the Productivity Decrease Risk Due to a Future Increase in Tropical Cyclone Intensity in Japan," Risk Analysis, John Wiley & Sons, vol. 30(12), pages 1789-1802, December.
  • Handle: RePEc:wly:riskan:v:30:y:2010:i:12:p:1789-1802
    DOI: 10.1111/j.1539-6924.2010.01483.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2010.01483.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2010.01483.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James B. Elsner & James P. Kossin & Thomas H. Jagger, 2008. "The increasing intensity of the strongest tropical cyclones," Nature, Nature, vol. 455(7209), pages 92-95, September.
    2. Christopher W. Landsea, 2005. "Hurricanes and global warming," Nature, Nature, vol. 438(7071), pages 11-12, December.
    3. Stéphane Hallegatte, 2008. "An Adaptive Regional Input‐Output Model and its Application to the Assessment of the Economic Cost of Katrina," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 779-799, June.
    4. Stéphane Hallegatte, 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," Post-Print hal-00716550, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew Ranson & Lisa Tarquinio & Audrey Lew, 2016. "Modeling the Impact of Climate Change on Extreme Weather Losses," NCEE Working Paper Series 201602, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised May 2016.
    2. Sayaka Hoshino & Miguel Esteban & Takahito Mikami & Hiroshi Takagi & Tomoya Shibayama, 2016. "Estimation of increase in storm surge damage due to climate change and sea level rise in the Greater Tokyo area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 539-565, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esteban, Miguel & Zhang, Qi & Longarte-Galnares, Gorka, 2012. "Cost-benefit analysis of a green electricity system in Japan considering the indirect economic impacts of tropical cyclones," Energy Policy, Elsevier, vol. 43(C), pages 49-57.
    2. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    3. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    4. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    5. Kochaniak, Katarzyna & Ulman, Paweł & Zajkowski, Robert, 2023. "Effectiveness of COVID-19 state aid for microenterprises in Poland," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 483-497.
    6. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2018. "Shedding Light on the Spatial Diffusion of Disasters," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181556, Verein für Socialpolitik / German Economic Association.
    7. Michael A. Hamilton & Tao Hong & Elizabeth Casman & Patrick L. Gurian, 2015. "Risk‐Based Decision Making for Reoccupation of Contaminated Areas Following a Wide‐Area Anthrax Release," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1348-1363, July.
    8. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    9. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    10. INOUE Hiroyasu & MURASE Yohsuke & TODO Yasuyuki, 2022. "Lockdowns Require Geographic Coordination because of the Propagation of Economic Effects through Supply Chains," Discussion papers 22076, Research Institute of Economy, Trade and Industry (RIETI).
    11. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    12. A. Deo & D. Ganer & G. Nair, 2011. "Tropical cyclone activity in global warming scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 771-786, November.
    13. Eduardo Cavallo & Ilan Noy, 2009. "The Economics of Natural Disasters: A Survey," Research Department Publications 4649, Inter-American Development Bank, Research Department.
    14. David Mendoza‐Tinoco & Yixin Hu & Zhao Zeng & Konstantinos J. Chalvatzis & Ning Zhang & Albert E. Steenge & Dabo Guan, 2020. "Flood Footprint Assessment: A Multiregional Case of 2009 Central European Floods," Risk Analysis, John Wiley & Sons, vol. 40(8), pages 1612-1631, August.
    15. Robert Reinhardt, 2022. "Shaking up Foreign Finance: FDI in a Post-Disaster World," Working Papers halshs-03908250, HAL.
    16. Celso Brunetti & John Caramichael & Matteo Crosignani & Benjamin Dennis & Gurubala Kotta & Donald P. Morgan & Chaehee Shin & Ilknur Zer, 2022. "Climate-related Financial Stability Risks for the United States: Methods and Applications," Finance and Economics Discussion Series 2022-043, Board of Governors of the Federal Reserve System (U.S.).
    17. Selerio, Egberto & Maglasang, Renan, 2021. "Minimizing production loss consequent to disasters using a subsidy optimization model: a pandemic case," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 112-124.
    18. Stéphane Hallegatte, 2012. "An exploration of the link between development, economic growth, and natural risk," Post-Print hal-00802047, HAL.
    19. Ling Tan & Ji Guo & Selvarajah Mohanarajah & Kun Zhou, 2021. "Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2389-2417, July.
    20. Hallegatte, Stephane, 2011. "How economic growth and rational decisions can make disaster losses grow faster than wealth," Policy Research Working Paper Series 5617, The World Bank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:30:y:2010:i:12:p:1789-1802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.