IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v35y2015i7p1348-1363.html
   My bibliography  Save this article

Risk‐Based Decision Making for Reoccupation of Contaminated Areas Following a Wide‐Area Anthrax Release

Author

Listed:
  • Michael A. Hamilton
  • Tao Hong
  • Elizabeth Casman
  • Patrick L. Gurian

Abstract

This article presents an analysis of postattack response strategies to mitigate the risks of reoccupying contaminated areas following a release of Bacillus anthracis spores (the bacterium responsible for causing anthrax) in an urban setting. The analysis is based on a hypothetical attack scenario in which individuals are exposed to B. anthracis spores during an initial aerosol release and then placed on prophylactic antibiotics that successfully protect them against the initial aerosol exposure. The risk from reoccupying buildings contaminated with spores due to their reaerosolization and inhalation is then evaluated. The response options considered include: decontamination of the buildings, vaccination of individuals reoccupying the buildings, extended evacuation of individuals from the contaminated buildings, and combinations of these options. The study uses a decision tree to estimate the costs and benefits of alternative response strategies across a range of exposure risks. Results for best estimates of model inputs suggest that the most cost‐effective response for high‐risk scenarios (individual chance of infection exceeding 11%) consists of evacuation and building decontamination. For infection risks between 4% and 11%, the preferred option is to evacuate for a short period, vaccinate, and then reoccupy once the vaccine has taken effect. For risks between 0.003% and 4%, the preferred option is to vaccinate only. For risks below 0.003%, none of the mitigation actions have positive expected monetary benefits. A sensitivity analysis indicates that for high‐infection‐likelihood scenarios, vaccination is recommended in the case where decontamination efficacy is less than 99.99%.

Suggested Citation

  • Michael A. Hamilton & Tao Hong & Elizabeth Casman & Patrick L. Gurian, 2015. "Risk‐Based Decision Making for Reoccupation of Contaminated Areas Following a Wide‐Area Anthrax Release," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1348-1363, July.
  • Handle: RePEc:wly:riskan:v:35:y:2015:i:7:p:1348-1363
    DOI: 10.1111/risa.12383
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12383
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David L. Craft & Lawrence M. Wein & Alexander H. Wilkins, 2005. "Analyzing Bioterror Response Logistics: The Case of Anthrax," Management Science, INFORMS, vol. 51(5), pages 679-694, May.
    2. Mark H. Whitworth, 2006. "Designing the Response to an Anthrax Attack," Interfaces, INFORMS, vol. 36(6), pages 562-568, December.
    3. Dean A. Wilkening, 2008. "Modeling the Incubation Period of Inhalational Anthrax," Medical Decision Making, , vol. 28(4), pages 593-605, July.
    4. Margaret L. Brandeau & Jessica H. McCoy & Nathaniel Hupert & Jon-Erik Holty & Dena M. Bravata, 2009. "Recommendations for Modeling Disaster Responses in Public Health and Medicine: A Position Paper of the Society for Medical Decision Making," Medical Decision Making, , vol. 29(4), pages 438-460, July.
    5. S. S. Isukapalli & P. J. Lioy & P. G. Georgopoulos, 2008. "Mechanistic Modeling of Emergency Events: Assessing the Impact of Hypothetical Releases of Anthrax," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 723-740, June.
    6. Ron Brookmeyer & Elizabeth Johnson & Robert Bollinger, 2004. "Public health vaccination policies for containing an anthrax outbreak," Nature, Nature, vol. 432(7019), pages 901-904, December.
    7. Gregory S. Zaric & Dena M. Bravata & Jon-Erik Cleophas Holty & Kathryn M. McDonald & Douglas K. Owens & Margaret L. Brandeau, 2008. "Modeling the Logistics of Response to Anthrax Bioterrorism," Medical Decision Making, , vol. 28(3), pages 332-350, May.
    8. Jeffrey J. Whicker & David R. Janecky & Ted B. Doerr, 2008. "Adaptive Management: A Paradigm for Remediation of Public Facilities Following a Terrorist Attack," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1445-1456, October.
    9. Nathaniel Hupert & Daniel Wattson & Jason Cuomo & Eric Hollingsworth & Kristof Neukermans & Wei Xiong, 2009. "Predicting Hospital Surge after a Large-Scale Anthrax Attack: A Model-Based Analysis of CDC's Cities Readiness Initiative Prophylaxis Recommendations," Medical Decision Making, , vol. 29(4), pages 424-437, July.
    10. Adam Rose, 2004. "Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 2, pages 13-36, Springer.
    11. Stéphane Hallegatte, 2008. "An Adaptive Regional Input‐Output Model and its Application to the Assessment of the Economic Cost of Katrina," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 779-799, June.
    12. Charles N. Haas, 2002. "On the Risk of Mortality to Primates Exposed to Anthrax Spores," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 189-193, April.
    13. repec:reg:rpubli:98 is not listed on IDEAS
    14. Stéphane Hallegatte, 2008. "An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina," Post-Print hal-00716550, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margaret L. Brandeau, 2019. "OR Forum—Public Health Preparedness: Answering (Largely Unanswerable) Questions with Operations Research—The 2016–2017 Philip McCord Morse Lecture," Operations Research, INFORMS, vol. 67(3), pages 700-710, May.
    2. Damon J A Toth & Adi V Gundlapalli & Wiley A Schell & Kenneth Bulmahn & Thomas E Walton & Christopher W Woods & Catherine Coghill & Frank Gallegos & Matthew H Samore & Frederick R Adler, 2013. "Quantitative Models of the Dose-Response and Time Course of Inhalational Anthrax in Humans," PLOS Pathogens, Public Library of Science, vol. 9(8), pages 1-18, August.
    3. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.
    4. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    5. Alain, Guinet & Angel, Ruiz, 2016. "Modeling the logistics response to a bioterrorist anthrax attackAuthor-Name: Wanying, Chen," European Journal of Operational Research, Elsevier, vol. 254(2), pages 458-471.
    6. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    7. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    8. Ubaid Illahi & Mohammad Shafi Mir, 2021. "Maintaining efficient logistics and supply chain management operations during and after coronavirus (COVID-19) pandemic: learning from the past experiences," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11157-11178, August.
    9. David Mendoza‐Tinoco & Yixin Hu & Zhao Zeng & Konstantinos J. Chalvatzis & Ning Zhang & Albert E. Steenge & Dabo Guan, 2020. "Flood Footprint Assessment: A Multiregional Case of 2009 Central European Floods," Risk Analysis, John Wiley & Sons, vol. 40(8), pages 1612-1631, August.
    10. Selerio, Egberto & Maglasang, Renan, 2021. "Minimizing production loss consequent to disasters using a subsidy optimization model: a pandemic case," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 112-124.
    11. Jie Zhang & Meng Lu & Lulu Zhang & Yadong Xue, 2021. "Assessing indirect economic losses of landslides along highways," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2775-2796, April.
    12. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    13. Henriet, Fanny & Hallegatte, Stephane, 2008. "Assessing the Consequences of Natural Disasters on Production Networks: A Disaggregated Approach," Coalition Theory Network Working Papers 46657, Fondazione Eni Enrico Mattei (FEEM).
    14. Zhuoqun Gao & R. Richard Geddes & Tao Ma, 2020. "Direct and Indirect Economic Losses Using Typhoon-Flood Disaster Analysis: An Application to Guangdong Province, China," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    15. Kilian Kuhla & Sven Norman Willner & Christian Otto & Leonie Wenz & Anders Levermann, 2021. "Future heat stress to reduce people’s purchasing power," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    16. Hiroyasu Inoue & Yasuyuki Todo, 2019. "Propagation of negative shocks across nation-wide firm networks," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-17, March.
    17. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.
    18. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    19. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    20. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:35:y:2015:i:7:p:1348-1363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.