IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v54y2007i5p530-543.html
   My bibliography  Save this article

Interval scheduling: A survey

Author

Listed:
  • Antoon W.J. Kolen
  • Jan Karel Lenstra
  • Christos H. Papadimitriou
  • Frits C.R. Spieksma

Abstract

In interval scheduling, not only the processing times of the jobs but also their starting times are given. This article surveys the area of interval scheduling and presents proofs of results that have been known within the community for some time. We first review the complexity and approximability of different variants of interval scheduling problems. Next, we motivate the relevance of interval scheduling problems by providing an overview of applications that have appeared in literature. Finally, we focus on algorithmic results for two important variants of interval scheduling problems. In one variant we deal with nonidentical machines: instead of each machine being continuously available, there is a given interval for each machine in which it is available. In another variant, the machines are continuously available but they are ordered, and each job has a given “maximal” machine on which it can be processed. We investigate the complexity of these problems and describe algorithms for their solution. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007

Suggested Citation

  • Antoon W.J. Kolen & Jan Karel Lenstra & Christos H. Papadimitriou & Frits C.R. Spieksma, 2007. "Interval scheduling: A survey," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 530-543, August.
  • Handle: RePEc:wly:navres:v:54:y:2007:i:5:p:530-543
    DOI: 10.1002/nav.20231
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20231
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matteo Fischetti & Silvano Martello & Paolo Toth, 1989. "The Fixed Job Schedule Problem with Working-Time Constraints," Operations Research, INFORMS, vol. 37(3), pages 395-403, June.
    2. Ilya Gertsbakh & Helman I. Stern, 1978. "Minimal Resources for Fixed and Variable Job Schedules," Operations Research, INFORMS, vol. 26(1), pages 68-85, February.
    3. Leo G. Kroon & Marc Salomon & Luk N. Van Wassenhove, 1997. "Exact and Approximation Algorithms for the Tactical Fixed Interval Scheduling Problem," Operations Research, INFORMS, vol. 45(4), pages 624-638, August.
    4. Anthonisse, J. M. & Lenstra, J. K., 1984. "Operational operations research at the Mathematical Centre," European Journal of Operational Research, Elsevier, vol. 15(3), pages 293-296, March.
    5. Jansen, Klaus, 1994. "An approximation algorithm for the license and shift class design problem," European Journal of Operational Research, Elsevier, vol. 73(1), pages 127-131, February.
    6. Matteo Fischetti & Silvano Martello & Paolo Toth, 1987. "The Fixed Job Schedule Problem with Spread-Time Constraints," Operations Research, INFORMS, vol. 35(6), pages 849-858, December.
    7. Julia Chuzhoy & Rafail Ostrovsky & Yuval Rabani, 2006. "Approximation Algorithms for the Job Interval Selection Problem and Related Scheduling Problems," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 730-738, November.
    8. Matteo Fischetti & Silvano Martello & Paolo Toth, 1992. "Approximation Algorithms for Fixed Job Schedule Problems," Operations Research, INFORMS, vol. 40(1-supplem), pages 96-108, February.
    9. Nicholas G. Hall & 'Maseka Lesaoana & Chris N. Potts, 2001. "Scheduling with Fixed Delivery Dates," Operations Research, INFORMS, vol. 49(1), pages 134-144, February.
    10. A. Mingozzi & M. A. Boschetti & S. Ricciardelli & L. Bianco, 1999. "A Set Partitioning Approach to the Crew Scheduling Problem," Operations Research, INFORMS, vol. 47(6), pages 873-888, December.
    11. Kroon, Leo G. & Salomon, Marc & Van Wassenhove, Luk N., 1995. "Exact and approximation algorithms for the operational fixed interval scheduling problem," European Journal of Operational Research, Elsevier, vol. 82(1), pages 190-205, April.
    12. Kolen, Antoon W. J. & Kroon, Leo G., 1991. "On the computational complexity of (maximum) class scheduling," European Journal of Operational Research, Elsevier, vol. 54(1), pages 23-38, September.
    13. Reddy Dondeti, V. & Emmons, Hamilton, 1993. "Algorithms for preemptive scheduling of different classes of processors to do jobs with fixed times," European Journal of Operational Research, Elsevier, vol. 70(3), pages 316-326, November.
    14. Michael W. Carter & Craig A. Tovey, 1992. "When Is the Classroom Assignment Problem Hard?," Operations Research, INFORMS, vol. 40(1-supplem), pages 28-39, February.
    15. Martello, Silvano & Toth, Paolo, 1986. "A heuristic approach to the bus driver scheduling problem," European Journal of Operational Research, Elsevier, vol. 24(1), pages 106-117, January.
    16. Kolen, Antoon W. J. & Kroon, Leo G., 1994. "An analysis of shift class design problems," European Journal of Operational Research, Elsevier, vol. 79(3), pages 417-430, December.
    17. V. R. Dondeti & Hamilton Emmons, 1992. "Fixed Job Scheduling with Two Types of Processors," Operations Research, INFORMS, vol. 40(1-supplem), pages 76-85, February.
    18. Gabrel, Virginie, 1995. "Scheduling jobs within time windows on identical parallel machines: New model and algorithms," European Journal of Operational Research, Elsevier, vol. 83(2), pages 320-329, June.
    19. Eliezer Dekel & Sartaj Sahni, 1983. "Parallel Scheduling Algorithms," Operations Research, INFORMS, vol. 31(1), pages 24-49, February.
    20. Kolen, Antoon W. J. & Kroon, Leo G., 1993. "On the computational complexity of (maximum) shift class scheduling," European Journal of Operational Research, Elsevier, vol. 64(1), pages 138-151, January.
    21. G. B. Dantzig & D. R. Fulkerson, 1954. "Minimizing the number of tankers to meet a fixed schedule," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(3), pages 217-222, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ons Sassi & Ammar Oulamara, 2017. "Electric vehicle scheduling and optimal charging problem: complexity, exact and heuristic approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 519-535, January.
    2. Nils Boysen & Stefan Fedtke & Felix Weidinger, 2017. "Truck Scheduling in the Postal Service Industry," Transportation Science, INFORMS, vol. 51(2), pages 723-736, May.
    3. Dimitrios Letsios & Jeremy T. Bradley & Suraj G & Ruth Misener & Natasha Page, 2021. "Approximate and robust bounded job start scheduling for Royal Mail delivery offices," Journal of Scheduling, Springer, vol. 24(2), pages 237-258, April.
    4. Martinovic, J. & Strasdat, N. & Valério de Carvalho, J. & Furini, F., 2023. "A combinatorial flow-based formulation for temporal bin packing problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 554-574.
    5. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich & Bernhard Primas, 2018. "Models and algorithms for energy-efficient scheduling with immediate start of jobs," Journal of Scheduling, Springer, vol. 21(5), pages 505-516, October.
    6. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2023. "Multi-depot electric vehicle scheduling in in-plant production logistics considering non-linear charging models," European Journal of Operational Research, Elsevier, vol. 306(2), pages 828-848.
    7. de Weerdt, Mathijs & Baart, Robert & He, Lei, 2021. "Single-machine scheduling with release times, deadlines, setup times, and rejection," European Journal of Operational Research, Elsevier, vol. 291(2), pages 629-639.
    8. Di Martinelly, Christine & Meskens, Nadine, 2017. "A bi-objective integrated approach to building surgical teams and nurse schedule rosters to maximise surgical team affinities and minimise nurses' idle time," International Journal of Production Economics, Elsevier, vol. 191(C), pages 323-334.
    9. Felix Weidinger & Nils Boysen & Dirk Briskorn, 2018. "Storage Assignment with Rack-Moving Mobile Robots in KIVA Warehouses," Service Science, INFORMS, vol. 52(6), pages 1479-1495, December.
    10. Julie Poullet & Axel Parmentier, 2020. "Shift Planning Under Delay Uncertainty at Air France: A Vehicle-Scheduling Problem with Outsourcing," Transportation Science, INFORMS, vol. 54(4), pages 956-972, July.
    11. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan, 2019. "Matching supply and demand in a sharing economy: Classification, computational complexity, and application," European Journal of Operational Research, Elsevier, vol. 278(2), pages 578-595.
    12. Arne Herzel & Michael Hopf & Clemens Thielen, 2019. "Multistage interval scheduling games," Journal of Scheduling, Springer, vol. 22(3), pages 359-377, June.
    13. Nicolas Pinson & Frits C. R. Spieksma, 2019. "Online interval scheduling on two related machines: the power of lookahead," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 224-253, July.
    14. Yim, Seho & Hong, Sung-Pil & Park, Myoung-Ju & Chung, Yerim, 2022. "Inverse interval scheduling via reduction on a single machine," European Journal of Operational Research, Elsevier, vol. 303(2), pages 541-549.
    15. Matthias Bentert & René Bevern & Rolf Niedermeier, 2019. "Inductive $$k$$ k -independent graphs and c-colorable subgraphs in scheduling: a review," Journal of Scheduling, Springer, vol. 22(1), pages 3-20, February.
    16. Tadumadze, Giorgi & Boysen, Nils & Emde, Simon & Weidinger, Felix, 2019. "Integrated truck and workforce scheduling to accelerate the unloading of trucks," European Journal of Operational Research, Elsevier, vol. 278(1), pages 343-362.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kroon, Leo G. & Edwin Romeijn, H. & Zwaneveld, Peter J., 1997. "Routing trains through railway stations: complexity issues," European Journal of Operational Research, Elsevier, vol. 98(3), pages 485-498, May.
    2. Kovalyov, Mikhail Y. & Ng, C.T. & Cheng, T.C. Edwin, 2007. "Fixed interval scheduling: Models, applications, computational complexity and algorithms," European Journal of Operational Research, Elsevier, vol. 178(2), pages 331-342, April.
    3. Yim, Seho & Hong, Sung-Pil & Park, Myoung-Ju & Chung, Yerim, 2022. "Inverse interval scheduling via reduction on a single machine," European Journal of Operational Research, Elsevier, vol. 303(2), pages 541-549.
    4. Türsel Eliiyi, Deniz & Azizoglu, Meral, 2011. "Heuristics for operational fixed job scheduling problems with working and spread time constraints," International Journal of Production Economics, Elsevier, vol. 132(1), pages 107-121, July.
    5. Bekki, Özgün BarIs & Azizoglu, Meral, 2008. "Operational fixed interval scheduling problem on uniform parallel machines," International Journal of Production Economics, Elsevier, vol. 112(2), pages 756-768, April.
    6. Kroon, Leo G. & Salomon, Marc & Van Wassenhove, Luk N., 1995. "Exact and approximation algorithms for the operational fixed interval scheduling problem," European Journal of Operational Research, Elsevier, vol. 82(1), pages 190-205, April.
    7. Krishnamoorthy, M. & Ernst, A.T. & Baatar, D., 2012. "Algorithms for large scale Shift Minimisation Personnel Task Scheduling Problems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 34-48.
    8. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    9. A. Mingozzi & M. A. Boschetti & S. Ricciardelli & L. Bianco, 1999. "A Set Partitioning Approach to the Crew Scheduling Problem," Operations Research, INFORMS, vol. 47(6), pages 873-888, December.
    10. Bahel, Eric & Trudeau, Christian, 2019. "Stability and fairness in the job scheduling problem," Games and Economic Behavior, Elsevier, vol. 117(C), pages 1-14.
    11. Matteo Fischetti & Andrea Lodi & Silvano Martello & Paolo Toth, 2001. "A Polyhedral Approach to Simplified Crew Scheduling and Vehicle Scheduling Problems," Management Science, INFORMS, vol. 47(6), pages 833-850, June.
    12. Zhang, Xiandong & (Yale) Gong, Yeming & Zhou, Shuyu & de Koster, René & van de Velde, Steef, 2016. "Increasing the revenue of self-storage warehouses by optimizing order scheduling," European Journal of Operational Research, Elsevier, vol. 252(1), pages 69-78.
    13. Siwate Rojanasoonthon & Jonathan Bard, 2005. "A GRASP for Parallel Machine Scheduling with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 32-51, February.
    14. Gabrel, Virginie, 1995. "Scheduling jobs within time windows on identical parallel machines: New model and algorithms," European Journal of Operational Research, Elsevier, vol. 83(2), pages 320-329, June.
    15. Diego B.C. Faneyte & Frits C.R. Spieksma & Gerhard J. Woeginger, 2002. "A branch‐and‐price algorithm for a hierarchical crew scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(8), pages 743-759, December.
    16. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    17. Borgonjon, Tessa & Maenhout, Broos, 2022. "An exact approach for the personnel task rescheduling problem with task retiming," European Journal of Operational Research, Elsevier, vol. 296(2), pages 465-484.
    18. Lee, Soonhui & Turner, Jonathan & Daskin, Mark S. & Homem-de-Mello, Tito & Smilowitz, Karen, 2012. "Improving fleet utilization for carriers by interval scheduling," European Journal of Operational Research, Elsevier, vol. 218(1), pages 261-269.
    19. Artiouchine, Konstantin & Baptiste, Philippe & Dürr, Christoph, 2008. "Runway sequencing with holding patterns," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1254-1266, September.
    20. Markó Horváth & Tamás Kis, 2019. "Computing strong lower and upper bounds for the integrated multiple-depot vehicle and crew scheduling problem with branch-and-price," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 39-67, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:54:y:2007:i:5:p:530-543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.