IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v296y2022i2p465-484.html
   My bibliography  Save this article

An exact approach for the personnel task rescheduling problem with task retiming

Author

Listed:
  • Borgonjon, Tessa
  • Maenhout, Broos

Abstract

In this paper, we study the personnel task rescheduling problem with task retiming. We assume a baseline personnel task schedule that is subject to different types of disruptions, occurring on a daily basis. This operational uncertainty is the result of three sources of variability, i.e. uncertainty of demand, uncertainty of capacity and uncertainty of arrival, which may render the baseline schedule infeasible. Therefore, the rescheduling of the originally constructed personnel schedule is necessary to compose an operational schedule. We propose a dedicated branch-and-price procedure to recover the personnel task schedule, which considers a wide range of recovery mechanisms to reassign the tasks to workers, allowing the retiming of tasks, to restore the feasibility. Different computational experiments are conducted to show the performance of the proposed branch-and-price thriving on different speed-up techniques and optimisation principles. We benchmark the proposed algorithm with other optimisation procedures and show the contribution of the algorithm design choices.

Suggested Citation

  • Borgonjon, Tessa & Maenhout, Broos, 2022. "An exact approach for the personnel task rescheduling problem with task retiming," European Journal of Operational Research, Elsevier, vol. 296(2), pages 465-484.
  • Handle: RePEc:eee:ejores:v:296:y:2022:i:2:p:465-484
    DOI: 10.1016/j.ejor.2021.03.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721002733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.03.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maenhout, Broos & Vanhoucke, Mario, 2018. "A perturbation matheuristic for the integrated personnel shift and task re-scheduling problem," European Journal of Operational Research, Elsevier, vol. 269(3), pages 806-823.
    2. Andrew J. Schaefer & Ellis L. Johnson & Anton J. Kleywegt & George L. Nemhauser, 2005. "Airline Crew Scheduling Under Uncertainty," Transportation Science, INFORMS, vol. 39(3), pages 340-348, August.
    3. Ladislav Lettovský & Ellis L. Johnson & George L. Nemhauser, 2000. "Airline Crew Recovery," Transportation Science, INFORMS, vol. 34(4), pages 337-348, November.
    4. Leo G. Kroon & Marc Salomon & Luk N. Van Wassenhove, 1997. "Exact and Approximation Algorithms for the Tactical Fixed Interval Scheduling Problem," Operations Research, INFORMS, vol. 45(4), pages 624-638, August.
    5. Chris N. Potts & Luk N. Van Wassenhove, 1985. "A Branch and Bound Algorithm for the Total Weighted Tardiness Problem," Operations Research, INFORMS, vol. 33(2), pages 363-377, April.
    6. Ayten Turkcan & M. Akturk & Robert Storer, 2009. "Predictive/reactive scheduling with controllable processing times and earliness-tardiness penalties," IISE Transactions, Taylor & Francis Journals, vol. 41(12), pages 1080-1095.
    7. A.T. Ernst & H. Jiang & M. Krishnamoorthy & B. Owens & D. Sier, 2004. "An Annotated Bibliography of Personnel Scheduling and Rostering," Annals of Operations Research, Springer, vol. 127(1), pages 21-144, March.
    8. Krishnamoorthy, M. & Ernst, A.T. & Baatar, D., 2012. "Algorithms for large scale Shift Minimisation Personnel Task Scheduling Problems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 34-48.
    9. Abdelghany, Khaled F. & Abdelghany, Ahmed F. & Ekollu, Goutham, 2008. "An integrated decision support tool for airlines schedule recovery during irregular operations," European Journal of Operational Research, Elsevier, vol. 185(2), pages 825-848, March.
    10. Daniel Potthoff & Dennis Huisman & Guy Desaulniers, 2010. "Column Generation with Dynamic Duty Selection for Railway Crew Rescheduling," Transportation Science, INFORMS, vol. 44(4), pages 493-505, November.
    11. Christopher Bayliss & Geert De Maere & Jason A. D. Atkin & Marc Paelinck, 2020. "Scheduling airline reserve crew using a probabilistic crew absence and recovery model," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(4), pages 543-565, April.
    12. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    13. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    14. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2009. "Optimizing a multiple objective surgical case sequencing problem," International Journal of Production Economics, Elsevier, vol. 119(2), pages 354-366, June.
    15. Margarida Moz & Margarida Pato, 2003. "An Integer Multicommodity Flow Model Applied to the Rerostering of Nurse Schedules," Annals of Operations Research, Springer, vol. 119(1), pages 285-301, March.
    16. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    17. William J. Abernathy & Nicholas Baloff & John C. Hershey & Sten Wandel, 1973. "A Three-Stage Manpower Planning and Scheduling Model—A Service-Sector Example," Operations Research, INFORMS, vol. 21(3), pages 693-711, June.
    18. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    19. S. L. van de Velde, 1993. "Duality-Based Algorithms for Scheduling Unrelated Parallel Machines," INFORMS Journal on Computing, INFORMS, vol. 5(2), pages 192-205, May.
    20. V. R. Dondeti & Hamilton Emmons, 1992. "Fixed Job Scheduling with Two Types of Processors," Operations Research, INFORMS, vol. 40(1-supplem), pages 76-85, February.
    21. Marjan van den Akker & Han Hoogeveen & Steef van de Velde, 2002. "Combining Column Generation and Lagrangean Relaxation to Solve a Single-Machine Common Due Date Problem," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 37-51, February.
    22. Jonas Ingels & Broos Maenhout, 2017. "Employee substitutability as a tool to improve the robustness in personnel scheduling," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 623-658, July.
    23. Various, 1973. "Conference Programs," NBER Chapters, in: The New Realities of the Business Cycle, pages 126-131, National Bureau of Economic Research, Inc.
    24. Huisman, Dennis, 2007. "A column generation approach for the rail crew re-scheduling problem," European Journal of Operational Research, Elsevier, vol. 180(1), pages 163-173, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wenshu & Xie, Kexin & Guo, Siqi & Li, Weixing & Xiao, Fan & Liang, Zhe, 2023. "A shift-based model to solve the integrated staff rostering and task assignment problem with real-world requirements," European Journal of Operational Research, Elsevier, vol. 310(1), pages 360-378.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingels, Jonas & Maenhout, Broos, 2019. "Optimised buffer allocation to construct stable personnel shift rosters," Omega, Elsevier, vol. 82(C), pages 102-117.
    2. Jonas Ingels & Broos Maenhout, 2017. "Employee substitutability as a tool to improve the robustness in personnel scheduling," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 623-658, July.
    3. Jane Lee & Lavanya Marla & Alexandre Jacquillat, 2020. "Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 973-997, July.
    4. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    5. Toni I. Wickert & Pieter Smet & Greet Vanden Berghe, 2021. "Quantifying and enforcing robustness in staff rostering," Journal of Scheduling, Springer, vol. 24(3), pages 347-366, June.
    6. Breugem, T. & van Rossum, B.T.C. & Dollevoet, T. & Huisman, D., 2022. "A column generation approach for the integrated crew re-planning problem," Omega, Elsevier, vol. 107(C).
    7. Lin, Shih-Wei & Ying, Kuo-Ching, 2014. "Minimizing shifts for personnel task scheduling problems: A three-phase algorithm," European Journal of Operational Research, Elsevier, vol. 237(1), pages 323-334.
    8. Ana Paias & Marta Mesquita & Margarida Moz & Margarida Pato, 2021. "A network flow-based algorithm for bus driver rerostering," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 543-576, June.
    9. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    10. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    11. Lin, Zhiyuan & Kwan, Raymond S.K., 2016. "A branch-and-price approach for solving the train unit scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 97-120.
    12. Breugem, T. & Dollevoet, T.A.B. & Huisman, D., 2017. "Is Equality always desirable?," Econometric Institute Research Papers EI2017-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Sanja Petrovic, 2019. "“You have to get wet to learn how to swim” applied to bridging the gap between research into personnel scheduling and its implementation in practice," Annals of Operations Research, Springer, vol. 275(1), pages 161-179, April.
    14. Kraul, Sebastian & Fügener, Andreas & Brunner, Jens O. & Blobner, Manfred, 2019. "A robust framework for task-related resident scheduling," European Journal of Operational Research, Elsevier, vol. 276(2), pages 656-675.
    15. Marco Schulze & Jürgen Zimmermann, 2017. "Staff and machine shift scheduling in a German potash mine," Journal of Scheduling, Springer, vol. 20(6), pages 635-656, December.
    16. Thomas Breugem & Twan Dollevoet & Dennis Huisman, 2022. "Is Equality Always Desirable? Analyzing the Trade-Off Between Fairness and Attractiveness in Crew Rostering," Management Science, INFORMS, vol. 68(4), pages 2619-2641, April.
    17. Federico Malucelli & Emanuele Tresoldi, 2019. "Delay and disruption management in local public transportation via real-time vehicle and crew re-scheduling: a case study," Public Transport, Springer, vol. 11(1), pages 1-25, June.
    18. Maenhout, Broos & Vanhoucke, Mario, 2018. "A perturbation matheuristic for the integrated personnel shift and task re-scheduling problem," European Journal of Operational Research, Elsevier, vol. 269(3), pages 806-823.
    19. Ağralı, Semra & Taşkın, Z. Caner & Ünal, A. Tamer, 2017. "Employee scheduling in service industries with flexible employee availability and demand," Omega, Elsevier, vol. 66(PA), pages 159-169.
    20. Hassani, Rachid & Desaulniers, Guy & Elhallaoui, Issmail, 2021. "Real-time bi-objective personnel re-scheduling in the retail industry," European Journal of Operational Research, Elsevier, vol. 293(1), pages 93-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:296:y:2022:i:2:p:465-484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.