IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v29y2023i4d10.1007_s10732-023-09519-6.html
   My bibliography  Save this article

Effective adaptive large neighborhood search for a firefighters timetabling problem

Author

Listed:
  • Mohamed-Amine Ouberkouk

    (Université de Technologie de Compiègne)

  • Jean-Paul Boufflet

    (Université de Technologie de Compiègne)

  • Aziz Moukrim

    (Université de Technologie de Compiègne)

Abstract

Every year, wildfires accentuated by global warming, cause economic and ecological losses, and often, human casualties. Increasing operational capacity of firefighter crews is of utmost importance to better face the forest fire period that yearly occurs. In this study, we investigate the real-world firefighters timetabling problem of the INFOCA institution, Andalusia (Spain). The main issue is to achieve maximum operational capability while taking into account work regulation constraints. This paper proposes an Integer Linear Programming (ILP) formulation that makes it feasible to solve small/medium instances to optimality. We put forward a matheuristic (ILPH) based on the ILP formulation, and we obtain solutions for larger instances. We propose an Adaptive Large Neighbourhood Search metaheuristic (ALNS) to obtain better results for larger instances and we use a version of the ILPH as one of the constructive methods. The ALNS obtains all the optimal solutions found by the ILP on small instances. It yields better solutions than the ILPH matheuristic on larger instances within shorter processing times. We report on experiments performed on datasets generated using real-world data of the INFOCA institution. The work was initiated as part of the GEO-SAFE project.

Suggested Citation

  • Mohamed-Amine Ouberkouk & Jean-Paul Boufflet & Aziz Moukrim, 2023. "Effective adaptive large neighborhood search for a firefighters timetabling problem," Journal of Heuristics, Springer, vol. 29(4), pages 545-580, December.
  • Handle: RePEc:spr:joheur:v:29:y:2023:i:4:d:10.1007_s10732-023-09519-6
    DOI: 10.1007/s10732-023-09519-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-023-09519-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-023-09519-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reshma Chirayil Chandrasekharan & Pieter Smet & Tony Wauters, 2021. "An automatic constructive matheuristic for the shift minimization personnel task scheduling problem," Journal of Heuristics, Springer, vol. 27(1), pages 205-227, April.
    2. Emir Demirović & Nysret Musliu & Felix Winter, 2019. "Modeling and solving staff scheduling with partial weighted maxSAT," Annals of Operations Research, Springer, vol. 275(1), pages 79-99, April.
    3. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "Workforce planning incorporating skills: State of the art," European Journal of Operational Research, Elsevier, vol. 243(1), pages 1-16.
    4. A.T. Ernst & H. Jiang & M. Krishnamoorthy & B. Owens & D. Sier, 2004. "An Annotated Bibliography of Personnel Scheduling and Rostering," Annals of Operations Research, Springer, vol. 127(1), pages 21-144, March.
    5. Tadumadze, Giorgi & Boysen, Nils & Emde, Simon & Weidinger, Felix, 2019. "Integrated truck and workforce scheduling to accelerate the unloading of trucks," European Journal of Operational Research, Elsevier, vol. 278(1), pages 343-362.
    6. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    7. Krishnamoorthy, M. & Ernst, A.T. & Baatar, D., 2012. "Algorithms for large scale Shift Minimisation Personnel Task Scheduling Problems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 34-48.
    8. Tadumadze, Giorgi & Boysen, Nils & Emde, Simon & Weidinger, Felix, 2019. "Integrated truck and workforce scheduling to accelerate the unloading of trucks," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 112842, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    9. Brucker, Peter & Qu, Rong & Burke, Edmund, 2011. "Personnel scheduling: Models and complexity," European Journal of Operational Research, Elsevier, vol. 210(3), pages 467-473, May.
    10. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    11. Haroldo G. Santos & Túlio A. M. Toffolo & Rafael A. M. Gomes & Sabir Ribas, 2016. "Integer programming techniques for the nurse rostering problem," Annals of Operations Research, Springer, vol. 239(1), pages 225-251, April.
    12. De Bruecker, Philippe & Beliën, Jeroen & Van den Bergh, Jorne & Demeulemeester, Erik, 2018. "A three-stage mixed integer programming approach for optimizing the skill mix and training schedules for aircraft maintenance," European Journal of Operational Research, Elsevier, vol. 267(2), pages 439-452.
    13. Heil, Julia & Hoffmann, Kirsten & Buscher, Udo, 2020. "Railway crew scheduling: Models, methods and applications," European Journal of Operational Research, Elsevier, vol. 283(2), pages 405-425.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, David S.W. & Leung, Janny M.Y. & Dullaert, Wout & Marques, Inês, 2020. "A graph-based formulation for the shift rostering problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 285-300.
    2. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    3. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    4. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    5. Suk Ho Jin & Ho Yeong Yun & Suk Jae Jeong & Kyung Sup Kim, 2017. "Hybrid and Cooperative Strategies Using Harmony Search and Artificial Immune Systems for Solving the Nurse Rostering Problem," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    6. Ladier, Anne-Laure & Alpan, Gülgün & Penz, Bernard, 2014. "Joint employee weekly timetabling and daily rostering: A decision-support tool for a logistics platform," European Journal of Operational Research, Elsevier, vol. 234(1), pages 278-291.
    7. Zhang, Zizhen & Qin, Hu & Wang, Kai & He, Huang & Liu, Tian, 2017. "Manpower allocation and vehicle routing problem in non-emergency ambulance transfer service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 45-59.
    8. Mark W. Isken & Osman T. Aydas, 2022. "A tactical multi-week implicit tour scheduling model with applications in healthcare," Health Care Management Science, Springer, vol. 25(4), pages 551-573, December.
    9. Florian Mischek & Nysret Musliu, 2019. "Integer programming model extensions for a multi-stage nurse rostering problem," Annals of Operations Research, Springer, vol. 275(1), pages 123-143, April.
    10. Fang, Kan & Wang, Shijin & Pinedo, Michael L. & Chen, Lin & Chu, Feng, 2021. "A combinatorial Benders decomposition algorithm for parallel machine scheduling with working-time restrictions," European Journal of Operational Research, Elsevier, vol. 291(1), pages 128-146.
    11. Marco Schulze & Jürgen Zimmermann, 2017. "Staff and machine shift scheduling in a German potash mine," Journal of Scheduling, Springer, vol. 20(6), pages 635-656, December.
    12. Lin, Shih-Wei & Ying, Kuo-Ching, 2014. "Minimizing shifts for personnel task scheduling problems: A three-phase algorithm," European Journal of Operational Research, Elsevier, vol. 237(1), pages 323-334.
    13. Jaime Miranda & Pablo A. Rey & Antoine Sauré & Richard Weber, 2018. "Metro Uses a Simulation-Optimization Approach to Improve Fare-Collection Shift Scheduling," Interfaces, INFORMS, vol. 48(6), pages 529-542, November.
    14. Jonas Ingels & Broos Maenhout, 2017. "Employee substitutability as a tool to improve the robustness in personnel scheduling," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 623-658, July.
    15. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    16. Hans Corsten & Ferdinand Becker & Hagen Salewski, 2020. "Integrating truck and workforce scheduling in a cross-dock: analysis of different workforce coordination policies," Journal of Business Economics, Springer, vol. 90(2), pages 207-237, March.
    17. Caballini, Claudia & Paolucci, Massimo, 2020. "A rostering approach to minimize health risks for workers: An application to a container terminal in the Italian port of Genoa," Omega, Elsevier, vol. 95(C).
    18. Mohammad Reza Hassani & J. Behnamian, 2021. "A scenario-based robust optimization with a pessimistic approach for nurse rostering problem," Journal of Combinatorial Optimization, Springer, vol. 41(1), pages 143-169, January.
    19. David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
    20. Ali İşeri & Hatice Güner & Ali Rıza Güner, 2025. "Pareto-optimal workforce scheduling with worker skills and preferences," Operational Research, Springer, vol. 25(2), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:29:y:2023:i:4:d:10.1007_s10732-023-09519-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.