IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v51y2004i5p654-685.html
   My bibliography  Save this article

Strategies for managing the flexible capacity in the airline industry

Author

Listed:
  • Ebru K. Bish
  • Rawee Suwandechochai
  • Douglas R. Bish

Abstract

The ability to effectively match supply and demand under uncertainty can result in significant revenue benefits in the airline industry. We study the benefits of a Demand Driven Swapping (DDS) approach that takes advantage of the flexibilities in the system and dynamically swaps aircraft as departures near and more accurate demand information is obtained. We analyze the effectiveness of different DDS strategies, characterized by their frequency (how often the swapping decision is revised), in hedging against demand uncertainty. Swapping aircraft several weeks prior to departures will not cause much disturbance to revenue management and operations, but will be based on highly uncertain demands. On the other hand, revising the swapping decision later will decrease the possibility of bad swaps, but at a higher cost of disrupting airport services and operations. Our objective is to provide guidelines on how the flexible (swappable) capacity should be managed in the system. We study analytical models to gain insights into the critical parameters that affect the revenue benefits of the different swapping strategies. Our study determines the conditions under which each of the different DDS strategies is effective. We complement our analysis by testing the proposed DDS strategies on a set of flight legs, using data obtained from United Airlines. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.

Suggested Citation

  • Ebru K. Bish & Rawee Suwandechochai & Douglas R. Bish, 2004. "Strategies for managing the flexible capacity in the airline industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 654-685, August.
  • Handle: RePEc:wly:navres:v:51:y:2004:i:5:p:654-685
    DOI: 10.1002/nav.20019
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20019
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin G. Thengvall & Jonathan F. Bard & Gang Yu, 2003. "A Bundle Algorithm Approach for the Aircraft Schedule Recovery Problem During Hub Closures," Transportation Science, INFORMS, vol. 37(4), pages 392-407, November.
    2. Kalyan T. Talluri, 1996. "Swapping Applications in a Daily Airline Fleet Assignment," Transportation Science, INFORMS, vol. 30(3), pages 237-248, August.
    3. Jeffrey I. McGill & Garrett J. van Ryzin, 1999. "Revenue Management: Research Overview and Prospects," Transportation Science, INFORMS, vol. 33(2), pages 233-256, May.
    4. Ram Gopalan & Kalyan Talluri, 1998. "Mathematical models in airline schedule planning: A survey," Annals of Operations Research, Springer, vol. 76(0), pages 155-185, January.
    5. Matthew E. Berge & Craig A. Hopperstad, 1993. "Demand Driven Dispatch: A Method for Dynamic Aircraft Capacity Assignment, Models and Algorithms," Operations Research, INFORMS, vol. 41(1), pages 153-168, February.
    6. Robert L. Winkler & Gary M. Roodman & Robert R. Britney, 1972. "The Determination of Partial Moments," Management Science, INFORMS, vol. 19(3), pages 290-296, November.
    7. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    2. Dalalah, Doraid & Ojiako, Udechukwu & Chipulu, Maxwell, 2020. "Voluntary overbooking in commercial airline reservations," Journal of Air Transport Management, Elsevier, vol. 86(C).
    3. Daniel Fry & Peter Belobaba, 2016. "Demand driven dispatch and revenue management in a competitive network environment," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(5), pages 380-398, October.
    4. Douglas R. Bish & Ebru K. Bish & Lingrui Liao & Juqi Liu, 2011. "Revenue management with aircraft reassignment flexibility," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 136-152, March.
    5. Rujeerapaiboon, Napat & Zhong, Yuanguang & Zhu, Dan, 2023. "Resilience of long chain under disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 597-615.
    6. Christina Büsing & Daniel Kadatz & Catherine Cleophas, 2019. "Capacity Uncertainty in Airline Revenue Management: Models, Algorithms, and Computations," Transportation Science, INFORMS, vol. 53(2), pages 383-400, March.
    7. Catherine Cleophas & Daniel Kadatz & Sebastian Vock, 2017. "Resilient revenue management: a literature survey of recent theoretical advances," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(5), pages 483-498, October.
    8. Hai Jiang & Cynthia Barnhart, 2009. "Dynamic Airline Scheduling," Transportation Science, INFORMS, vol. 43(3), pages 336-354, August.
    9. Hanif D. Sherali & Xiaomei Zhu, 2008. "Two-Stage Fleet Assignment Model Considering Stochastic Passenger Demands," Operations Research, INFORMS, vol. 56(2), pages 383-399, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    2. Hanif D. Sherali & Ebru K. Bish & Xiaomei Zhu, 2005. "Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment," Transportation Science, INFORMS, vol. 39(3), pages 349-366, August.
    3. Wang, Xiubin & Regan, Amelia, 2006. "Dynamic yield management when aircraft assignments are subject to swap," Transportation Research Part B: Methodological, Elsevier, vol. 40(7), pages 563-576, August.
    4. Abdelghany, Khaled F. & Abdelghany, Ahmed F. & Ekollu, Goutham, 2008. "An integrated decision support tool for airlines schedule recovery during irregular operations," European Journal of Operational Research, Elsevier, vol. 185(2), pages 825-848, March.
    5. Cynthia Barnhart & Amr Farahat & Manoj Lohatepanont, 2009. "Airline Fleet Assignment with Enhanced Revenue Modeling," Operations Research, INFORMS, vol. 57(1), pages 231-244, February.
    6. Saravanan Venkatachalam & Suresh Acharya & Kenji Oba & Yoshinari Nakayama, 2020. "Prescriptive Analytics for Swapping Aircraft Assignments at All Nippon Airways," Interfaces, INFORMS, vol. 50(2), pages 99-111, March.
    7. Ravindra K. Ahuja & Jon Goodstein & Amit Mukherjee & James B. Orlin & Dushyant Sharma, 2007. "A Very Large-Scale Neighborhood Search Algorithm for the Combined Through-Fleet-Assignment Model," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 416-428, August.
    8. Douglas R. Bish & Ebru K. Bish & Lingrui Liao & Juqi Liu, 2011. "Revenue management with aircraft reassignment flexibility," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 136-152, March.
    9. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    10. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A multi-criteria repair/recovery framework for the tail assignment problem in airlines," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 137-151.
    11. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    12. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    13. Ovidiu Listes & Rommert Dekker, 2005. "A Scenario Aggregation–Based Approach for Determining a Robust Airline Fleet Composition for Dynamic Capacity Allocation," Transportation Science, INFORMS, vol. 39(3), pages 367-382, August.
    14. Hai Jiang & Cynthia Barnhart, 2009. "Dynamic Airline Scheduling," Transportation Science, INFORMS, vol. 43(3), pages 336-354, August.
    15. Cynthia Barnhart & Timothy S. Kniker & Manoj Lohatepanont, 2002. "Itinerary-Based Airline Fleet Assignment," Transportation Science, INFORMS, vol. 36(2), pages 199-217, May.
    16. Obrad Babić & Milica Kalić & Goran Pavković & Slavica Dožić & Mirjana Čangalović, 2010. "Heuristic approach to the airline schedule disturbances problem," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(3), pages 257-280, February.
    17. Sato, Keisuke & Fukumura, Naoto, 2012. "Real-time freight locomotive rescheduling and uncovered train detection during disruption," European Journal of Operational Research, Elsevier, vol. 221(3), pages 636-648.
    18. Uğur Arıkan & Sinan Gürel & M. Selim Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    19. Warburg, Valdemar & Gotsæd Hansen, Troels & Larsen, Allan & Norman, Hans & Andersson, Erik, 2008. "Dynamic airline scheduling: An analysis of the potentials of refleeting and retiming," Journal of Air Transport Management, Elsevier, vol. 14(4), pages 163-167.
    20. Catherine Cleophas & Daniel Kadatz & Sebastian Vock, 2017. "Resilient revenue management: a literature survey of recent theoretical advances," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(5), pages 483-498, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:51:y:2004:i:5:p:654-685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.