IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v33y2010i3p257-280.html
   My bibliography  Save this article

Heuristic approach to the airline schedule disturbances problem

Author

Listed:
  • Obrad Babić
  • Milica Kalić
  • Goran Pavković
  • Slavica Dožić
  • Mirjana Čangalović

Abstract

When disturbances make it impossible to realise the planned flight schedule, the dispatcher at the airline operational centre defines a new flight schedule based on airline policy, in order to reduce the negative effects of these perturbations. Depending on airline policy, when designing the new flight schedule, the dispatcher delays or cancels some flights and reassigns some flights to available aircraft. In this paper, a decision support system (DSS) for solving the airline schedule disturbances problem is developed aiming to assist decision makers in handling disturbances in real-time. The system is based on a heuristic algorithm, which generates a list of different feasible schedules ordered according to the value of an objective function. The dispatcher can thus select and implement one of them. In this paper, the possibilities of DSS are illustrated by real numerical examples that concern JAT Airways' flight schedule disturbances.

Suggested Citation

  • Obrad Babić & Milica Kalić & Goran Pavković & Slavica Dožić & Mirjana Čangalović, 2010. "Heuristic approach to the airline schedule disturbances problem," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(3), pages 257-280, February.
  • Handle: RePEc:taf:transp:v:33:y:2010:i:3:p:257-280
    DOI: 10.1080/03081061003732318
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081061003732318
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081061003732318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin G. Thengvall & Jonathan F. Bard & Gang Yu, 2003. "A Bundle Algorithm Approach for the Aircraft Schedule Recovery Problem During Hub Closures," Transportation Science, INFORMS, vol. 37(4), pages 392-407, November.
    2. Abdelghany, Khaled F. & Abdelghany, Ahmed F. & Ekollu, Goutham, 2008. "An integrated decision support tool for airlines schedule recovery during irregular operations," European Journal of Operational Research, Elsevier, vol. 185(2), pages 825-848, March.
    3. Songjun Luo & Gang Yu, 1997. "On the Airline Schedule Perturbation Problem Caused by the Ground Delay Program," Transportation Science, INFORMS, vol. 31(4), pages 298-311, November.
    4. Wu, Cheng-Lung & Caves, Robert E., 2002. "Towards the optimisation of the schedule reliability of aircraft rotations," Journal of Air Transport Management, Elsevier, vol. 8(6), pages 419-426.
    5. Yan, Shangyao & Tu, Yu-ping, 1997. "Multifleet routing and multistop flight scheduling for schedule perturbation," European Journal of Operational Research, Elsevier, vol. 103(1), pages 155-169, November.
    6. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2002. "Network pricing optimization in multi-user and multimodal context with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 779-798, November.
    7. T. Andersson * & P. Värbrand, 2004. "The flight perturbation problem," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(2), pages 91-117, March.
    8. Yan, Shangyao & Yang, Dah-Hwei, 1996. "A decision support framework for handling schedule perturbation," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 405-419, December.
    9. Shangyao Yan & Chung-Gee Lin, 1997. "Airline Scheduling for the Temporary Closure of Airports," Transportation Science, INFORMS, vol. 31(1), pages 72-82, February.
    10. Ahmad I. Z. Jarrah & Gang Yu & Nirup Krishnamurthy & Ananda Rakshit, 1993. "A Decision Support Framework for Airline Flight Cancellations and Delays," Transportation Science, INFORMS, vol. 27(3), pages 266-280, August.
    11. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    12. Ananda Rakshit & Nirup Krishnamurthy & Gang Yu, 1996. "System Operations Advisor: A Real-Time Decision Support System for Managing Airline Operations at United Airlines," Interfaces, INFORMS, vol. 26(2), pages 50-58, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    2. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    3. Zhao, Ai & Bard, Jonathan F. & Bickel, J. Eric, 2023. "A two-stage approach to aircraft recovery under uncertainty," Journal of Air Transport Management, Elsevier, vol. 111(C).
    4. Sato, Keisuke & Fukumura, Naoto, 2012. "Real-time freight locomotive rescheduling and uncovered train detection during disruption," European Journal of Operational Research, Elsevier, vol. 221(3), pages 636-648.
    5. Stojkovic, Goran & Soumis, François & Desrosiers, Jacques & Solomon, Marius M., 2002. "An optimization model for a real-time flight scheduling problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 779-788, November.
    6. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    7. Stephen J. Maher, 2016. "Solving the Integrated Airline Recovery Problem Using Column-and-Row Generation," Transportation Science, INFORMS, vol. 50(1), pages 216-239, February.
    8. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    9. Abdelghany, Khaled F. & Abdelghany, Ahmed F. & Ekollu, Goutham, 2008. "An integrated decision support tool for airlines schedule recovery during irregular operations," European Journal of Operational Research, Elsevier, vol. 185(2), pages 825-848, March.
    10. Thengvall, Benjamin G. & Yu, Gang & Bard, Jonathan F., 2001. "Multiple fleet aircraft schedule recovery following hub closures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(4), pages 289-308, May.
    11. Huang, Zhouchun & Luo, Xiaodong & Jin, Xianfei & Karichery, Sureshan, 2022. "An iterative cost-driven copy generation approach for aircraft recovery problem," European Journal of Operational Research, Elsevier, vol. 301(1), pages 334-348.
    12. T. Andersson * & P. Värbrand, 2004. "The flight perturbation problem," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(2), pages 91-117, March.
    13. Jane Lee & Lavanya Marla & Alexandre Jacquillat, 2020. "Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 973-997, July.
    14. Derui Wang & Yanfeng Wu & Jian-Qiang Hu & Miaomiao Liu & Peiwen Yu & Cheng Zhang & Yan Wu, 2019. "Flight Schedule Recovery: A Simulation-Based Approach," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-19, December.
    15. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    16. Naz Yeti̇moğlu, Yücel & Selim Aktürk, M., 2021. "Aircraft and passenger recovery during an aircraft’s unexpected unavailability," Journal of Air Transport Management, Elsevier, vol. 91(C).
    17. Sinclair, Karine & Cordeau, Jean-François & Laporte, Gilbert, 2014. "Improvements to a large neighborhood search heuristic for an integrated aircraft and passenger recovery problem," European Journal of Operational Research, Elsevier, vol. 233(1), pages 234-245.
    18. Uğur Arıkan & Sinan Gürel & M. Selim Aktürk, 2017. "Flight Network-Based Approach for Integrated Airline Recovery with Cruise Speed Control," Transportation Science, INFORMS, vol. 51(4), pages 1259-1287, November.
    19. Shangyao Yan & Chin-Hui Tang & Chong-Lan Shieh, 2005. "A Simulation Framework for Evaluating Airline Temporary Schedule Adjustments Following Incidents," Transportation Planning and Technology, Taylor & Francis Journals, vol. 28(3), pages 189-211, March.
    20. Jeffery L. Kennington & Charles D. Nicholson, 2010. "The Uncapacitated Time-Space Fixed-Charge Network Flow Problem: An Empirical Investigation of Procedures for Arc Capacity Assignment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 326-337, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:33:y:2010:i:3:p:257-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.