IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v36y2002i9p779-788.html
   My bibliography  Save this article

An optimization model for a real-time flight scheduling problem

Author

Listed:
  • Stojkovic, Goran
  • Soumis, François
  • Desrosiers, Jacques
  • Solomon, Marius M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Stojkovic, Goran & Soumis, François & Desrosiers, Jacques & Solomon, Marius M., 2002. "An optimization model for a real-time flight scheduling problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 779-788, November.
  • Handle: RePEc:eee:transa:v:36:y:2002:i:9:p:779-788
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(01)00039-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas R. Sexton & Lawrence D. Bodin, 1985. "Optimizing Single Vehicle Many-to-Many Operations with Desired Delivery Times: I. Scheduling," Transportation Science, INFORMS, vol. 19(4), pages 378-410, November.
    2. Songjun Luo & Gang Yu, 1997. "On the Airline Schedule Perturbation Problem Caused by the Ground Delay Program," Transportation Science, INFORMS, vol. 31(4), pages 298-311, November.
    3. Ahmad I. Jarrah & Jon Goodstein & Ram Narasimhan, 2000. "An Efficient Airline Re-Fleeting Model for the Incremental Modification of Planned Fleet Assignments," Transportation Science, INFORMS, vol. 34(4), pages 349-363, November.
    4. Octavio Richetta & Amedeo R. Odoni, 1993. "Solving Optimally the Static Ground-Holding Policy Problem in Air Traffic Control," Transportation Science, INFORMS, vol. 27(3), pages 228-238, August.
    5. Yan, Shangyao & Yang, Dah-Hwei, 1996. "A decision support framework for handling schedule perturbation," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 405-419, December.
    6. Shangyao Yan & Chung-Gee Lin, 1997. "Airline Scheduling for the Temporary Closure of Airports," Transportation Science, INFORMS, vol. 31(1), pages 72-82, February.
    7. Ladislav Lettovský & Ellis L. Johnson & George L. Nemhauser, 2000. "Airline Crew Recovery," Transportation Science, INFORMS, vol. 34(4), pages 337-348, November.
    8. Yvan Dumas & François Soumis & Jacques Desrosiers, 1990. "Technical Note—Optimizing the Schedule for a Fixed Vehicle Path with Convex Inconvenience Costs," Transportation Science, INFORMS, vol. 24(2), pages 145-152, May.
    9. Teodorovic, Dusan & Guberinic, Slobodan, 1984. "Optimal dispatching strategy on an airline network after a schedule perturbation," European Journal of Operational Research, Elsevier, vol. 15(2), pages 178-182, February.
    10. Richetta, Octavio & Odoni, Amedeo R., 1994. "Dynamic solution to the ground-holding problem in air traffic control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(3), pages 167-185, May.
    11. Ahmad I. Z. Jarrah & Gang Yu & Nirup Krishnamurthy & Ananda Rakshit, 1993. "A Decision Support Framework for Airline Flight Cancellations and Delays," Transportation Science, INFORMS, vol. 27(3), pages 266-280, August.
    12. Mirela Stojković & François Soumis & Jacques Desrosiers, 1998. "The Operational Airline Crew Scheduling Problem," Transportation Science, INFORMS, vol. 32(3), pages 232-245, August.
    13. Foldes, Stephan & Soumis, Francois, 1993. "PERT and crashing revisited: Mathematical generalizations," European Journal of Operational Research, Elsevier, vol. 64(2), pages 286-294, January.
    14. Ananda Rakshit & Nirup Krishnamurthy & Gang Yu, 1996. "System Operations Advisor: A Real-Time Decision Support System for Managing Airline Operations at United Airlines," Interfaces, INFORMS, vol. 26(2), pages 50-58, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uğur Arıkan & Sinan Gürel & M. Selim Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    2. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    3. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    4. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    5. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    6. Uğur Arıkan & Sinan Gürel & M. Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    7. Evler, Jan & Asadi, Ehsan & Preis, Henning & Fricke, Hartmut, 2021. "Airline ground operations: Optimal schedule recovery with uncertain arrival times," Journal of Air Transport Management, Elsevier, vol. 92(C).
    8. Sinclair, Karine & Cordeau, Jean-François & Laporte, Gilbert, 2014. "Improvements to a large neighborhood search heuristic for an integrated aircraft and passenger recovery problem," European Journal of Operational Research, Elsevier, vol. 233(1), pages 234-245.
    9. Cadarso, Luis & Marín, Ángel & Maróti, Gábor, 2013. "Recovery of disruptions in rapid transit networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 15-33.
    10. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    11. Cynthia Barnhart & Amy Cohn, 2004. "Airline Schedule Planning: Accomplishments and Opportunities," Manufacturing & Service Operations Management, INFORMS, vol. 6(1), pages 3-22, November.
    12. Stern, Helman I. & Gertsbakh, Ilya B., 2019. "Using deficit functions for aircraft fleet routing," Operations Research Perspectives, Elsevier, vol. 6(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    2. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    3. Obrad Babić & Milica Kalić & Goran Pavković & Slavica Dožić & Mirjana Čangalović, 2010. "Heuristic approach to the airline schedule disturbances problem," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(3), pages 257-280, February.
    4. Joyce W. Yen & John R. Birge, 2006. "A Stochastic Programming Approach to the Airline Crew Scheduling Problem," Transportation Science, INFORMS, vol. 40(1), pages 3-14, February.
    5. Paul M. Carlson, 2000. "Exploiting the Opportunities of Collaborative Decision Making: A Model and Efficient Solution Algorithm for Airline Use," Transportation Science, INFORMS, vol. 34(4), pages 381-393, November.
    6. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    7. Stephen J. Maher, 2016. "Solving the Integrated Airline Recovery Problem Using Column-and-Row Generation," Transportation Science, INFORMS, vol. 50(1), pages 216-239, February.
    8. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    9. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    10. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    11. Abdelghany, Khaled F. & Abdelghany, Ahmed F. & Ekollu, Goutham, 2008. "An integrated decision support tool for airlines schedule recovery during irregular operations," European Journal of Operational Research, Elsevier, vol. 185(2), pages 825-848, March.
    12. Zhang, Yu, 2008. "Real-time Inter-modal Strategies for Airline Schedule Perturbation Recovery and Airport Congestion Mitigation under Collaborative Decision Making (CDM)," University of California Transportation Center, Working Papers qt2k44c9tx, University of California Transportation Center.
    13. Thengvall, Benjamin G. & Yu, Gang & Bard, Jonathan F., 2001. "Multiple fleet aircraft schedule recovery following hub closures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(4), pages 289-308, May.
    14. Brunner, Jens O., 2014. "Rescheduling of flights during ground delay programs with consideration of passenger and crew connections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 236-252.
    15. Vaaben, Bo & Larsen, Jesper, 2015. "Mitigation of airspace congestion impact on airline networks," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 54-65.
    16. Hu, Yuzhen & Song, Yan & Zhao, Kang & Xu, Baoguang, 2016. "Integrated recovery of aircraft and passengers after airline operation disruption based on a GRASP algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 97-112.
    17. Zhao, Ai & Bard, Jonathan F. & Bickel, J. Eric, 2023. "A two-stage approach to aircraft recovery under uncertainty," Journal of Air Transport Management, Elsevier, vol. 111(C).
    18. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    19. AlKheder, Sharaf, 2021. "Passengers intentions towards self-services check-in, Kuwait airport as a case study," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    20. Hanif D. Sherali & Ebru K. Bish & Xiaomei Zhu, 2005. "Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment," Transportation Science, INFORMS, vol. 39(3), pages 349-366, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:36:y:2002:i:9:p:779-788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.