IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v38y1991i5p669-677.html
   My bibliography  Save this article

Interactive optimization methodology for fleet scheduling

Author

Listed:
  • William G. Nulty
  • H. Donald Ratliff

Abstract

This article addresses the problem of scheduling the United States Navy's Atlantic Fleet to satisfy overseas strategic requirements. An integer programming formulation is developed but results in a model with prohibitive size. This fact and the qualitative nature of additional secondary objectives and constraints suggest an interactive optimization approach. A system that solves a natural relaxation of the integer program within an interactive environment is discussed.

Suggested Citation

  • William G. Nulty & H. Donald Ratliff, 1991. "Interactive optimization methodology for fleet scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(5), pages 669-677, October.
  • Handle: RePEc:wly:navres:v:38:y:1991:i:5:p:669-677
    DOI: 10.1002/1520-6750(199110)38:53.0.CO;2-Y
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199110)38:53.0.CO;2-Y
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199110)38:53.0.CO;2-Y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerald G. Brown & Clark E. Goodman & R. Kevin Wood, 1990. "Annual Scheduling of Atlantic Fleet Naval Combatants," Operations Research, INFORMS, vol. 38(2), pages 249-259, April.
    2. Marshall L. Fisher, 1985. "An Applications Oriented Guide to Lagrangian Relaxation," Interfaces, INFORMS, vol. 15(2), pages 10-21, April.
    3. G. B. Dantzig & D. R. Fulkerson, 1954. "Minimizing the number of tankers to meet a fixed schedule," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(3), pages 217-222, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Salmerón & Jeffrey Kline & Greta Spitz Densham, 2011. "Optimizing Schedules for Maritime Humanitarian Cooperative Engagements from a United States Navy Sea Base," Interfaces, INFORMS, vol. 41(3), pages 238-253, June.
    2. Paul A. Chircop & Timothy J. Surendonk & Menkes H. L. van den Briel & Toby Walsh, 2022. "On routing and scheduling a fleet of resource-constrained vessels to provide ongoing continuous patrol coverage," Annals of Operations Research, Springer, vol. 312(2), pages 723-760, May.
    3. Stephen E. Bechtold & Larry W. Jacobs, 1996. "The equivalence of general set‐covering and implicit integer programming formulations for shift scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 233-249, March.
    4. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    5. Ricardo Gatica & Pablo Miranda, 2011. "Special Issue on Latin-American Research: A Time Based Discretization Approach for Ship Routing and Scheduling with Variable Speed," Networks and Spatial Economics, Springer, vol. 11(3), pages 465-485, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peiling Wu & Joseph C. Hartman & George R. Wilson, 2005. "An Integrated Model and Solution Approach for Fleet Sizing with Heterogeneous Assets," Transportation Science, INFORMS, vol. 39(1), pages 87-103, February.
    2. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    3. Wu, Lingxiao & Pan, Kai & Wang, Shuaian & Yang, Dong, 2018. "Bulk ship scheduling in industrial shipping with stochastic backhaul canvassing demand," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 117-136.
    4. Yanling Chu & Xiaoju Zhang & Zhongzhen Yang, 2017. "Multiple quay cranes scheduling for double cycling in container terminals," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    5. S Bilgin & M Azizoǧlu, 2006. "Capacity and tool allocation problem in flexible manufacturing systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 670-681, June.
    6. Syam, Siddhartha S. & Côté, Murray J., 2010. "A location-allocation model for service providers with application to not-for-profit health care organizations," Omega, Elsevier, vol. 38(3-4), pages 157-166, June.
    7. Peter Francis & Karen Smilowitz & Michal Tzur, 2006. "The Period Vehicle Routing Problem with Service Choice," Transportation Science, INFORMS, vol. 40(4), pages 439-454, November.
    8. Park, Moon-Won & Kim, Yeong-Dae, 2000. "A branch and bound algorithm for a production scheduling problem in an assembly system under due date constraints," European Journal of Operational Research, Elsevier, vol. 123(3), pages 504-518, June.
    9. Raymond K. Cheung & Chung-Lun Li & Wuqin Lin, 2002. "Interblock Crane Deployment in Container Terminals," Transportation Science, INFORMS, vol. 36(1), pages 79-93, February.
    10. Haghani, Ali & Oh, Sei-Chang, 1996. "Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(3), pages 231-250, May.
    11. J. F. Chen & W. E. Wilhelm, 1994. "Optimizing the allocation of components to kits in small‐lot, multiechelon assembly systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(2), pages 229-256, March.
    12. Degraeve, Z. & Jans, R.F., 2003. "Improved Lower Bounds For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-026-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).
    14. Leyla Ozsen & Collette R. Coullard & Mark S. Daskin, 2008. "Capacitated warehouse location model with risk pooling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 295-312, June.
    15. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    16. Mazzola, Joseph B. & Neebe, Alan W., 1999. "Lagrangian-relaxation-based solution procedures for a multiproduct capacitated facility location problem with choice of facility type," European Journal of Operational Research, Elsevier, vol. 115(2), pages 285-299, June.
    17. Shakeri, Shakib & Logendran, Rasaratnam, 2007. "A mathematical programming-based scheduling framework for multitasking environments," European Journal of Operational Research, Elsevier, vol. 176(1), pages 193-209, January.
    18. Koushik Ramakrishna & Moosa Sharafali & Yun Lim, 2015. "A two-item two-warehouse periodic review inventory model with transshipment," Annals of Operations Research, Springer, vol. 233(1), pages 365-381, October.
    19. Weraikat, Dua & Zanjani, Masoumeh Kazemi & Lehoux, Nadia, 2016. "Two-echelon pharmaceutical reverse supply chain coordination with customers incentives," International Journal of Production Economics, Elsevier, vol. 176(C), pages 41-52.
    20. Li, Wenjie & Yang, Lixing & Wang, Li & Zhou, Xuesong & Liu, Ronghui & Gao, Ziyou, 2017. "Eco-reliable path finding in time-variant and stochastic networks," Energy, Elsevier, vol. 121(C), pages 372-387.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:38:y:1991:i:5:p:669-677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.