IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0180370.html
   My bibliography  Save this article

Multiple quay cranes scheduling for double cycling in container terminals

Author

Listed:
  • Yanling Chu
  • Xiaoju Zhang
  • Zhongzhen Yang

Abstract

Double cycling is an efficient tool to increase the efficiency of quay crane (QC) in container terminals. In this paper, an optimization model for double cycling is developed to optimize the operation sequence of multiple QCs. The objective is to minimize the makespan of the ship handling operation considering the ship balance constraint. To solve the model, an algorithm based on Lagrangian relaxation is designed. Finally, we compare the efficiency of the Lagrangian relaxation based heuristic with the branch-and-bound method and a genetic algorithm using instances of different sizes. The results of numerical experiments indicate that the proposed model can effectively reduce the unloading and loading times of QCs. The effects of the ship balance constraint are more notable when the number of QCs is high.

Suggested Citation

  • Yanling Chu & Xiaoju Zhang & Zhongzhen Yang, 2017. "Multiple quay cranes scheduling for double cycling in container terminals," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
  • Handle: RePEc:plo:pone00:0180370
    DOI: 10.1371/journal.pone.0180370
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180370
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0180370&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0180370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anne V. Goodchild & Carlos F. Daganzo, 2006. "Double-Cycling Strategies for Container Ships and Their Effect on Ship Loading and Unloading Operations," Transportation Science, INFORMS, vol. 40(4), pages 473-483, November.
    2. Daganzo, Carlos F., 1989. "The crane scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 23(3), pages 159-175, June.
    3. Goodchild, Anne Victoria, 2005. "Crane Double Cycling in Container Ports: Algorithms, Evaluation, and Planning," University of California Transportation Center, Working Papers qt0nt8t1db, University of California Transportation Center.
    4. Michael Held & Richard M. Karp, 1970. "The Traveling-Salesman Problem and Minimum Spanning Trees," Operations Research, INFORMS, vol. 18(6), pages 1138-1162, December.
    5. Goodchild, A.V. & Daganzo, C.F., 2007. "Crane double cycling in container ports: Planning methods and evaluation," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 875-891, October.
    6. Shawn Choo & Diego Klabjan & David Simchi-Levi, 2010. "Multiship Crane Sequencing with Yard Congestion Constraints," Transportation Science, INFORMS, vol. 44(1), pages 98-115, February.
    7. Chung-Yee Lee & Ming Liu & Chengbin Chu, 2015. "Optimal Algorithm for the General Quay Crane Double-Cycling Problem," Transportation Science, INFORMS, vol. 49(4), pages 957-967, November.
    8. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    9. Raymond K. Cheung & Chung-Lun Li & Wuqin Lin, 2002. "Interblock Crane Deployment in Container Terminals," Transportation Science, INFORMS, vol. 36(1), pages 79-93, February.
    10. Goodchild, Anne V. & Daganzo, Carlos F., 2005. "Crane Double Cycling in Container Ports: Affect on Ship Dwell Time," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9qp7p7jq, Institute of Transportation Studies, UC Berkeley.
    11. A. Karam & A.B. Eltawil & N.A. Harraz, 2016. "Simultaneous assignment of quay cranes and internal trucks in container terminals," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 24(1), pages 107-125.
    12. Yongpei Guan & Kang-Hung Yang & Zhili Zhou, 2013. "The crane scheduling problem: models and solution approaches," Annals of Operations Research, Springer, vol. 203(1), pages 119-139, March.
    13. Marshall L. Fisher, 1985. "An Applications Oriented Guide to Lagrangian Relaxation," Interfaces, INFORMS, vol. 15(2), pages 10-21, April.
    14. Marshall L. Fisher, 2004. "Comments on ÜThe Lagrangian Relaxation Method for Solving Integer Programming ProblemsÝ," Management Science, INFORMS, vol. 50(12_supple), pages 1872-1874, December.
    15. Lee, Der-Horng & Wang, Hui Qiu & Miao, Lixin, 2008. "Quay crane scheduling with non-interference constraints in port container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(1), pages 124-135, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Veterina Nosadila Riaventin & Sofyan Dwi Cahyo & Ivan Kristianto Singgih, 2021. "A Model for Developing Existing Ports Considering Economic Impact and Network Connectivity," Sustainability, MDPI, vol. 13(7), pages 1-17, March.
    2. Di Luan & Mingjing Zhao & Qianru Zhao & Nan Wang, 2021. "Modelling of integrated scheduling problem of capacitated equipment systems with a multi-lane road network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-38, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ming & Chu, Feng & Zhang, Zizhen & Chu, Chengbin, 2015. "A polynomial-time heuristic for the quay crane double-cycling problem with internal-reshuffling operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 52-74.
    2. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.
    3. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    4. Gregorio Rius-Sorolla & Julien Maheut & Sofia Estelles-Miguel & Jose P. Garcia-Sabater, 2021. "Collaborative Distributed Planning with Asymmetric Information. A Technological Driver for Sustainable Development," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    5. Shawn Choo & Diego Klabjan & David Simchi-Levi, 2010. "Multiship Crane Sequencing with Yard Congestion Constraints," Transportation Science, INFORMS, vol. 44(1), pages 98-115, February.
    6. Steeger, Gregory & Rebennack, Steffen, 2017. "Dynamic convexification within nested Benders decomposition using Lagrangian relaxation: An application to the strategic bidding problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 669-686.
    7. Zhang, Xiaoju & Zeng, Qingcheng & Sheu, Jiuh-Biing, 2019. "Modeling the productivity and stability of a terminal operation system with quay crane double cycling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 181-197.
    8. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2015. "A location-inventory-pricing model in a supply chain distribution network with price-sensitive demands and inventory-capacity constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 238-255.
    9. Zhang, Xiaoju & Zeng, Qingcheng & Yang, Zhongzhen, 2016. "Modeling the mixed storage strategy for quay crane double cycling in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 171-187.
    10. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    11. Zhang, An & Zhang, Wenshuai & Chen, Yong & Chen, Guangting & Chen, Xufeng, 2017. "Approximate the scheduling of quay cranes with non-crossing constraints," European Journal of Operational Research, Elsevier, vol. 258(3), pages 820-828.
    12. Chung-Yee Lee & Ming Liu & Chengbin Chu, 2015. "Optimal Algorithm for the General Quay Crane Double-Cycling Problem," Transportation Science, INFORMS, vol. 49(4), pages 957-967, November.
    13. Dusan Ku & Tiru S. Arthanari, 2016. "On double cycling for container port productivity improvement," Annals of Operations Research, Springer, vol. 243(1), pages 55-70, August.
    14. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    15. Li, Wenjie & Yang, Lixing & Wang, Li & Zhou, Xuesong & Liu, Ronghui & Gao, Ziyou, 2017. "Eco-reliable path finding in time-variant and stochastic networks," Energy, Elsevier, vol. 121(C), pages 372-387.
    16. Wu, Lingxiao & Ma, Weimin, 2017. "Quay crane scheduling with draft and trim constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 38-68.
    17. G. Rius-Sorolla & J. Maheut & Jairo R. Coronado-Hernandez & J. P. Garcia-Sabater, 2020. "Lagrangian relaxation of the generic materials and operations planning model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 105-123, March.
    18. Kong, Lingrui & Ji, Mingjun & Gao, Zhendi, 2022. "An exact algorithm for scheduling tandem quay crane operations in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    19. Evrim Ursavas, 2017. "Crane allocation with stability considerations," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 379-401, June.
    20. Samadi, Mohammadreza & Nikolaev, Alexander & Nagi, Rakesh, 2016. "A subjective evidence model for influence maximization in social networks," Omega, Elsevier, vol. 59(PB), pages 263-278.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0180370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.