IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v5y2015i6p802-811.html
   My bibliography  Save this article

CO 2 chemisorption and cyclability analyses in α−Li 5 AlO 4 : effects of Na 2 CO 3 and K 2 CO 3 addition

Author

Listed:
  • M. Teresa Flores‐Martínez
  • Heriberto Pfeiffer

Abstract

Lithium aluminate (α−Li 5 AlO 4 ) was synthesized and mixed with potassium carbonate or sodium carbonate. The addition of these alkaline carbonates was produced during or after the synthesis process. The CO 2 chemisorption was evaluated using dynamic, isothermal, and cyclic thermogravimetric analyses. The presence of the K or Na in α−Li 5 AlO 4 changes the sorption properties in a wide temperature range. K‐ and Na‐Li 5 AlO 4 samples, when the alkaline carbonates were added 10 wt% presented better CO 2 capture properties, capturing 37−39 wt% at 660 °C and ∼50 wt% at 710 °C, for doped samples prepared mechanically or synthetically, respectively. The results revealed that the weight gained on α−Li 5 AlO 4 mixed with K‐ or Na‐carbonates was attributed to the formation of the eutectic phases. These materials would be suitable for CO 2 capture over a wide temperature range depending on the application process. Nevertheless, the cyclic experiments showed important variations in their respective efficiencies, depending on the temperature. © 2015 Society of Chemical Industry and John Wiley & Sons, Ltd

Suggested Citation

  • M. Teresa Flores‐Martínez & Heriberto Pfeiffer, 2015. "CO 2 chemisorption and cyclability analyses in α−Li 5 AlO 4 : effects of Na 2 CO 3 and K 2 CO 3 addition," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(6), pages 802-811, December.
  • Handle: RePEc:wly:greenh:v:5:y:2015:i:6:p:802-811
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1526
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    2. Gintautas Mozgeris & Daiva Juknelienė, 2021. "Modeling Future Land Use Development: A Lithuanian Case," Land, MDPI, vol. 10(4), pages 1-21, April.
    3. Balcombe, Paul & Speirs, Jamie & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "The carbon credentials of hydrogen gas networks and supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1077-1088.
    4. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    5. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    6. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    8. Vinca, Adriano & Rottoli, Marianna & Marangoni, Giacomo & Tavoni, Massimo, 2017. "The Role of Carbon Capture and Storage Electricity in Attaining 1.5 and 2°C," MITP: Mitigation, Innovation and Transformation Pathways 266285, Fondazione Eni Enrico Mattei (FEEM).
    9. Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
    10. Li, Qing & Zhang, Huaige & Hong, Xianpei, 2020. "Knowledge structure of technology licensing based on co-keywords network: A review and future directions," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 154-165.
    11. Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
    12. Liu, Quanyou & Zhu, Dongya & Jin, Zhijun & Tian, Hailong & Zhou, Bing & Jiang, Peixue & Meng, Qingqiang & Wu, Xiaoqi & Xu, Huiyuan & Hu, Ting & Zhu, Huixing, 2023. "Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    13. Cormos, Calin-Cristian, 2020. "Energy and cost efficient manganese chemical looping air separation cycle for decarbonized power generation based on oxy-fuel combustion and gasification," Energy, Elsevier, vol. 191(C).
    14. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    15. Silvana Fais & Giuseppe Casula & Francesco Cuccuru & Paola Ligas & Maria Giovanna Bianchi & Alberto Plaisant & Alberto Pettinau, 2019. "A Contribution to the Geological Characterization of a Potential Caprock-Reservoir System in the Sulcis Coal Basin (South-Western Sardinia)," Energies, MDPI, vol. 12(23), pages 1-37, November.
    16. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    17. Cavalcanti, Eduardo J.C. & Lima, Matheus S.R. & de Souza, Gabriel F., 2020. "Comparison of carbon capture system and concentrated solar power in natural gas combined cycle: Exergetic and exergoenvironmental analyses," Renewable Energy, Elsevier, vol. 156(C), pages 1336-1347.
    18. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Janusz Zdeb & Natalia Howaniec & Adam Smoliński, 2019. "Utilization of Carbon Dioxide in Coal Gasification—An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-12, January.
    20. Amigues, Jean-Pierre & Moreaux, Michel, 2019. "Energy Conversion Rate Improvements, Pollution Abatement Efforts and Energy Mix: The Transition toward the Green Economy under a Pollution Stock Constraint," TSE Working Papers 19-994, Toulouse School of Economics (TSE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:5:y:2015:i:6:p:802-811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.