IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v10y2020i5p1027-1038.html
   My bibliography  Save this article

Coupled CO2 capture and thermochemical heat storage of CaO derived from calcium acetate

Author

Listed:
  • Chaoying Sun
  • Xianyao Yan
  • Yingjie Li
  • Jianli Zhao
  • Zeyan Wang
  • Tao Wang

Abstract

CaO/Ca(OH)2 thermochemical heat storage (THS) technology is considered to be one of the most promising technologies for large‐scale solar energy storage. However, the THS performance of raw CaO‐based materials decreases during multiple cycles. In this work, CaO derived from calcium acetate (Ac‐CaO) is prepared and applied to a coupled system that achieved simultaneous CaO/Ca(OH)2 THS and CO2 capture. The CO2 capture and THS performances of Ac‐CaO are always higher than those of calcined limestone owing to the preferable pore structure, whereas Ac‐CaO exhibits decreasing CO2 capture and THS performance resulting from sintering and the formation of CaCO3 from CaO or Ca(OH)2 with ambient CO2 during air cooling, respectively. In the coupled CaO/Ca(OH)2 THS and CO2 capture system, Ac‐CaO is subjected to 10 CO2 capture cycles, 30 THS cycles, 1 CO2 capture cycle, 10 THS cycles, 1 CO2 capture cycle, and 10 THS cycles sequentially. The hydration and dehydration conversions of Ac‐CaO in the 31st THS cycle reach 91.7 and 93.6%, respectively, which are 1.6 and 1.6 times higher than those recorded prior to the 11th CO2 capture cycle owing to the decomposition of CaCO3 during calcination. The carbonation conversion of Ac‐CaO achieves 89.9% in the 11th CO2 capture cycle, which is 22.3% higher than that recorded prior to the 10 THS cycles owing to reactivation from the hydration process during THS. The CO2 capture and CaO/Ca(OH)2 THS processes are enhanced in the coupled system using Ac‐CaO; therefore, the coupled system appears promising for CaO/Ca(OH)2 THS and CO2 capture. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Chaoying Sun & Xianyao Yan & Yingjie Li & Jianli Zhao & Zeyan Wang & Tao Wang, 2020. "Coupled CO2 capture and thermochemical heat storage of CaO derived from calcium acetate," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1027-1038, October.
  • Handle: RePEc:wly:greenh:v:10:y:2020:i:5:p:1027-1038
    DOI: 10.1002/ghg.2021
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2021
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xia, B.Q. & Zhao, C.Y. & Yan, J. & Khosa, A.A., 2020. "Development of granular thermochemical heat storage composite based on calcium oxide," Renewable Energy, Elsevier, vol. 147(P1), pages 969-978.
    2. Yan, J. & Zhao, C.Y. & Xia, B.Q. & Wang, T., 2019. "The effect of dehydration temperatures on the performance of the CaO/Ca(OH)2 thermochemical heat storage system," Energy, Elsevier, vol. 186(C).
    3. Shiling Zhang & Lihui Zhang & Feng Duan, 2019. "Sulfation, pore, and fractal properties of hydrated spent calcium magnesium acetate from calcium‐based looping," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(3), pages 539-552, June.
    4. Qing Wu & Liuqing He & Lihui Zhang & Feng Duan, 2019. "Pore and fractal descriptions of a modified CaO‐based sorbent for sequence SO2/CO2 capture behavior," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(4), pages 825-836, August.
    5. Rong Liu & Xiaolong Wang & Shiwang Gao, 2020. "CO2 capture and mineralization using carbide slag doped fly ash," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(1), pages 103-115, February.
    6. Rahul R. Bhosale, 2020. "Solar thermochemical conversion of CO2 via erbium oxide based redox cycle," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 865-874, August.
    7. Sun, Jian & Sun, Yu & Yang, Yuandong & Tong, Xianliang & Liu, Wenqiang, 2019. "Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature," Applied Energy, Elsevier, vol. 242(C), pages 919-930.
    8. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    9. Wan Zhang & Xiaotong Ma & Yingjie Li & Jianli Zhao & Zeyan Wang, 2019. "A study of the synergistic effects of Mn/steam on CO2 capture performance of CaO by experiment and DFT calculation," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(2), pages 409-423, April.
    10. Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    2. Xu, Y.X. & Yan, J. & Zhao, C.Y., 2022. "Investigation on application temperature zone and exergy loss regulation based on MgCO3/MgO thermochemical heat storage and release process," Energy, Elsevier, vol. 239(PC).
    3. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Carro, A. & Chacartegui, R. & Ortiz, C. & Becerra, J.A., 2022. "Analysis of a thermochemical energy storage system based on the reversible Ca(OH)2/CaO reaction," Energy, Elsevier, vol. 261(PA).
    5. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
    6. Ying Yang & Yingjie Li & Xianyao Yan & Jianli Zhao & Chunxiao Zhang, 2021. "Development of Thermochemical Heat Storage Based on CaO/CaCO 3 Cycles: A Review," Energies, MDPI, vol. 14(20), pages 1-26, October.
    7. Laurie André & Stéphane Abanades, 2020. "Recent Advances in Thermochemical Energy Storage via Solid–Gas Reversible Reactions at High Temperature," Energies, MDPI, vol. 13(22), pages 1-23, November.
    8. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    9. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    10. Clark, Ruby-Jean & Farid, Mohammed, 2022. "Experimental investigation into cascade thermochemical energy storage system using SrCl2-cement and zeolite-13X materials," Applied Energy, Elsevier, vol. 316(C).
    11. Lehmann, Christoph & Beckert, Steffen & Gläser, Roger & Kolditz, Olaf & Nagel, Thomas, 2017. "Assessment of adsorbate density models for numerical simulations of zeolite-based heat storage applications," Applied Energy, Elsevier, vol. 185(P2), pages 1965-1970.
    12. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    13. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
    14. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2016. "Modeling and parametric analysis of an adsorber unit for thermal energy storage," Energy, Elsevier, vol. 102(C), pages 83-94.
    15. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    16. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    17. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    18. Xu, T.X. & Tian, X.K. & Khosa, A.A. & Yan, J. & Ye, Q. & Zhao, C.Y., 2021. "Reaction performance of CaCO3/CaO thermochemical energy storage with TiO2 dopant and experimental study in a fixed-bed reactor," Energy, Elsevier, vol. 236(C).
    19. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    20. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:10:y:2020:i:5:p:1027-1038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.