IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v35y2024i8ne2882.html

Modeling nonstationary surface‐level ozone extremes through the lens of US air quality standards: A Bayesian hierarchical approach

Author

Listed:
  • Jax Li
  • Brook T. Russell
  • Whitney K. Huang
  • William C. Porter

Abstract

Surface‐level ozone (O 3$$ {}_3 $$) is a harmful air pollutant whose effects may be more deleterious when at its most extreme levels. Current US air quality standards are written in terms of the 3‐year average of the 4th highest annual daily maximum 8‐h O 3$$ {}_3 $$ values; therefore, developing approaches based on extreme value theory may be useful. We develop a Bayesian hierarchical approach, where the r$$ r $$‐largest order statistics are parametrized by the generalized extreme value (GEV) distribution, while a Gaussian process is employed to characterize how the GEV parameters depend on the O 3$$ {}_3 $$ precursors, namely nitrous oxides (NO x$$ {}_x $$) and volatile organic compounds (VOCs). The fitted model is then used to characterize the upper tail of the distribution of O 3$$ {}_3 $$ and estimate O 3$$ {}_3 $$ noncompliance probabilities. We illustrate the proposed method using data from an air quality station in Providence, Rhode Island (RI). The results suggest that the far upper tail of extreme O 3$$ {}_3 $$ values is likely bounded, and the dependence of the upper tail distribution on NO x$$ {}_x $$ and O 3$$ {}_3 $$ is highly nonlinear, consistent with the known relationship, albeit not specifically for extreme values, in the existing scientific literature. A convolution‐based approach is used to estimate noncompliance probabilities for several covariate scenarios. Our results indicate that estimated noncompliance probabilities in recent years are much lower than in the mid‐1990s, primarily due to lower O 3$$ {}_3 $$ precursor levels. However, the estimated noncompliance probabilities appear to rise sharply for hypothetical stricter O 3$$ {}_3 $$ standards, even for the conditions observed in recent years.

Suggested Citation

  • Jax Li & Brook T. Russell & Whitney K. Huang & William C. Porter, 2024. "Modeling nonstationary surface‐level ozone extremes through the lens of US air quality standards: A Bayesian hierarchical approach," Environmetrics, John Wiley & Sons, Ltd., vol. 35(8), December.
  • Handle: RePEc:wly:envmet:v:35:y:2024:i:8:n:e2882
    DOI: 10.1002/env.2882
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2882
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stuart G. Coles & Jonathan A. Tawn, 1996. "A Bayesian Analysis of Extreme Rainfall Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 463-478, December.
    2. Cooley, Daniel & Nychka, Douglas & Naveau, Philippe, 2007. "Bayesian Spatial Modeling of Extreme Precipitation Return Levels," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 824-840, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ross Towe & Jonathan Tawn & Emma Eastoe & Rob Lamb, 2020. "Modelling the Clustering of Extreme Events for Short-Term Risk Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 32-53, March.
    2. Guanzhou Wei & Xiao Liu & Russell Barton, 2024. "An extended PDE‐based statistical spatio‐temporal model that suppresses the Gibbs phenomenon," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    3. Hongxiang Yan & Hamid Moradkhani, 2016. "Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 203-225, March.
    4. Tzu‐Han Peng & Cheng‐Ching Lin & Nan‐Jung Hsu & Chun‐Shu Chen, 2025. "A Spatial Hierarchical PGEV Model With Temporal Effects for Enhancing Extreme Value Analysis," Environmetrics, John Wiley & Sons, Ltd., vol. 36(6), September.
    5. Stephenson Alec G. & Tawn Jonathan A., 2013. "Determining the Best Track Performances of All Time Using a Conceptual Population Model for Athletics Records," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(1), pages 67-76, March.
    6. Wang, Bing Xing & Ye, Zhi-Sheng, 2015. "Inference on the Weibull distribution based on record values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 26-36.
    7. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    8. Manuel G. Scotto & Susana M. Barbosa & Andr�s M. Alonso, 2011. "Extreme value and cluster analysis of European daily temperature series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2793-2804, March.
    9. Rishikesh Yadav & Raphaël Huser & Thomas Opitz, 2021. "Spatial hierarchical modeling of threshold exceedances using rate mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    10. Juan Gonzalez & Daniela Rodriguez & Mariela Sued, 2013. "Threshold selection for extremes under a semiparametric model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 481-500, November.
    11. Linyin Cheng & Amir AghaKouchak & Eric Gilleland & Richard Katz, 2014. "Non-stationary extreme value analysis in a changing climate," Climatic Change, Springer, vol. 127(2), pages 353-369, November.
    12. Jonathan Jalbert & Christian Genest & Luc Perreault, 2022. "Interpolation of Precipitation Extremes on a Large Domain Toward IDF Curve Construction at Unmonitored Locations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 461-486, September.
    13. Hongxiang Yan & Hamid Moradkhani, 2016. "Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 203-225, March.
    14. Michael E. Mann & Elisabeth A. Lloyd & Naomi Oreskes, 2017. "Assessing climate change impacts on extreme weather events: the case for an alternative (Bayesian) approach," Climatic Change, Springer, vol. 144(2), pages 131-142, September.
    15. Hsieh, Ping-Hung, 2002. "An exploratory first step in teletraffic data modeling: evaluation of long-run performance of parameter estimators," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 263-283, August.
    16. K. Shuvo Bakar, 2020. "Interpolation of daily rainfall data using censored Bayesian spatially varying model," Computational Statistics, Springer, vol. 35(1), pages 135-152, March.
    17. Sweta Rai & Alexis Hoffman & Soumendra Lahiri & Douglas W. Nychka & Stephan R. Sain & Soutir Bandyopadhyay, 2024. "Fast parameter estimation of generalized extreme value distribution using neural networks," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    18. Park, Eunchun & Brorsen, Wade & Harri, Ardian, "undated". "Spatially Smoothed Crop Yield Density Estimation: Physical Distance vs Climate Similarity," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259145, Agricultural and Applied Economics Association.
    19. repec:osf:osfxxx:paby6_v1 is not listed on IDEAS
    20. Jill Trepanier, 2014. "Hurricane winds over the North Atlantic: spatial analysis and sensitivity to ocean temperature," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1733-1747, April.
    21. Jordan Richards & Jennifer L. Wadsworth, 2021. "Spatial deformation for nonstationary extremal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:35:y:2024:i:8:n:e2882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.