IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v9y2013i1p67-76n7.html
   My bibliography  Save this article

Determining the Best Track Performances of All Time Using a Conceptual Population Model for Athletics Records

Author

Listed:
  • Stephenson Alec G.

    (CSIRO Mathematics, Informatics and Statistics, Clayton South, Victoria, Australia)

  • Tawn Jonathan A.

    (Department of Mathematics and Statistics, Lancaster University, UK)

Abstract

What is the best male and female athletics performance in history? We seek to answer this question for Olympic distance track events by simultaneously modelling race performances over all Olympic distances and all times. Our model uses techniques from a branch of statistics called extreme value theory, and incorporates information on improvements over time using an exponential trend in addition to a process which identifies the changing ability of the population of athletes across all distances. We conclude that the best male performance of all time is the 1968 world record of Lee Evans in the 400 m, and that the best female performance of all time is the current 1988 world record of Florence Griffith-Joyner in the 100 m. More generally, our approach provides a basis for deriving a ranking of track athletes over any distance and at any point over the last 100 years.

Suggested Citation

  • Stephenson Alec G. & Tawn Jonathan A., 2013. "Determining the Best Track Performances of All Time Using a Conceptual Population Model for Athletics Records," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(1), pages 67-76, March.
  • Handle: RePEc:bpj:jqsprt:v:9:y:2013:i:1:p:67-76:n:7
    DOI: 10.1515/jqas-2012-0047
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2012-0047
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2012-0047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samprit Chatterjee & Sangit Chatterjee, 1982. "New Lamps for Old: An Exploratory Analysis of Running Times in Olympic Games," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(1), pages 14-22, March.
    2. Cooley, Daniel & Nychka, Douglas & Naveau, Philippe, 2007. "Bayesian Spatial Modeling of Extreme Precipitation Return Levels," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 824-840, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Griffin Jim E. & Hinoveanu Laurenţiu C. & Hopker James G., 2022. "Bayesian modelling of elite sporting performance with large databases," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 18(4), pages 253-268, December.
    2. Santos-Fernandez Edgar & Wu Paul & Mengersen Kerrie L., 2019. "Bayesian statistics meets sports: a comprehensive review," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(4), pages 289-312, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Eunchun & Brorsen, B. Wade & Harri, Ardian, 2016. "Using Bayesian Spatial Smoothing and Extreme Value Theory to Develop Area-Yield Crop Insurance Rating," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235754, Agricultural and Applied Economics Association.
    2. Hongxiang Yan & Hamid Moradkhani, 2016. "Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 203-225, March.
    3. Fatima Palacios‐Rodriguez & Elena Di Bernardino & Melina Mailhot, 2023. "Smooth copula‐based generalized extreme value model and spatial interpolation for extreme rainfall in Central Eastern Canada," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.
    4. Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
    5. Salaheddine El Adlouni, 2018. "Quantile regression C-vine copula model for spatial extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 299-317, October.
    6. Joaquim Henriques Vianna Neto & Alexandra M. Schmidt & Peter Guttorp, 2014. "Accounting for spatially varying directional effects in spatial covariance structures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 103-122, January.
    7. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    8. Miranda J. Fix & Daniel S. Cooley & Emeric Thibaud, 2021. "Simultaneous autoregressive models for spatial extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
    9. N. Beck & C. Genest & J. Jalbert & M. Mailhot, 2020. "Predicting extreme surges from sparse data using a copula‐based hierarchical Bayesian spatial model," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    10. Manuel G. Scotto & Susana M. Barbosa & Andr�s M. Alonso, 2011. "Extreme value and cluster analysis of European daily temperature series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2793-2804, March.
    11. Rishikesh Yadav & Raphaël Huser & Thomas Opitz, 2021. "Spatial hierarchical modeling of threshold exceedances using rate mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    12. Linyin Cheng & Amir AghaKouchak & Eric Gilleland & Richard Katz, 2014. "Non-stationary extreme value analysis in a changing climate," Climatic Change, Springer, vol. 127(2), pages 353-369, November.
    13. Jonathan Jalbert & Christian Genest & Luc Perreault, 2022. "Interpolation of Precipitation Extremes on a Large Domain Toward IDF Curve Construction at Unmonitored Locations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 461-486, September.
    14. Wang, Yixin & So, Mike K.P., 2016. "A Bayesian hierarchical model for spatial extremes with multiple durations," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 39-56.
    15. Gregory P. Bopp & Benjamin A. Shaby & Chris E. Forest & Alfonso Mejía, 2020. "Projecting Flood-Inducing Precipitation with a Bayesian Analogue Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 229-249, June.
    16. Beth Tellman & Cody Schank & Bessie Schwarz & Peter D. Howe & Alex de Sherbinin, 2020. "Using Disaster Outcomes to Validate Components of Social Vulnerability to Floods: Flood Deaths and Property Damage across the USA," Sustainability, MDPI, vol. 12(15), pages 1-28, July.
    17. Chiara Bocci & Enrica Caporali & Alessandra Petrucci, 2013. "Geoadditive modeling for extreme rainfall data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 181-193, April.
    18. Hongxiang Yan & Hamid Moradkhani, 2016. "Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 203-225, March.
    19. Michael E. Mann & Elisabeth A. Lloyd & Naomi Oreskes, 2017. "Assessing climate change impacts on extreme weather events: the case for an alternative (Bayesian) approach," Climatic Change, Springer, vol. 144(2), pages 131-142, September.
    20. K. Shuvo Bakar, 2020. "Interpolation of daily rainfall data using censored Bayesian spatially varying model," Computational Statistics, Springer, vol. 35(1), pages 135-152, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:9:y:2013:i:1:p:67-76:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.