IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v83y2015icp26-36.html

Inference on the Weibull distribution based on record values

Author

Listed:
  • Wang, Bing Xing
  • Ye, Zhi-Sheng

Abstract

Record data are commonly seen in everyday life, e.g., concentration of emerging contaminants in environmental studies. Based on record data, this study investigates point estimation and confidence intervals estimation for the Weibull distribution. The uniformly minimum variance unbiased estimator for the Weibull shape is derived. Based on this estimator, a bias-corrected estimator for the Weibull scale is obtained and it is shown to have much smaller bias and mean squared error compared with the maximum likelihood estimator. Confidence intervals for parameters and reliability characteristics of interest are constructed using pivotal or generalized pivotal quantities. Then the results are extended to the stress–strength model involving two Weibull populations with different parameter values. Construction of confidence intervals for the stress–strength reliability is discussed under both equal shape and unequal shape scenarios. Extensive simulations are used to demonstrate the performance of confidence intervals constructed using generalized pivotal quantities.

Suggested Citation

  • Wang, Bing Xing & Ye, Zhi-Sheng, 2015. "Inference on the Weibull distribution based on record values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 26-36.
  • Handle: RePEc:eee:csdana:v:83:y:2015:i:c:p:26-36
    DOI: 10.1016/j.csda.2014.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314002655
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sultan, K.S. & AL-Dayian, G.R. & Mohammad, H.H., 2008. "Estimation and prediction from gamma distribution based on record values," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1430-1440, January.
    2. Baklizi, Ayman, 2008. "Likelihood and Bayesian estimation of using lower record values from the generalized exponential distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3468-3473, March.
    3. Stuart G. Coles & Jonathan A. Tawn, 1996. "A Bayesian Analysis of Extreme Rainfall Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 463-478, December.
    4. Soliman, Ahmed A. & Abd Ellah, A.H. & Sultan, K.S., 2006. "Comparison of estimates using record statistics from Weibull model: Bayesian and non-Bayesian approaches," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 2065-2077, December.
    5. Lee, Hsiu-Mei & Lee, Wen-Chuan & Lei, Chia-Ling & Wu, Jong-Wuu, 2011. "Computational procedure of assessing lifetime performance index of Weibull lifetime products with the upper record values," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(6), pages 1177-1189.
    6. Soliman, Ahmed A. & Al-Aboud, Fahad M., 2008. "Bayesian inference using record values from Rayleigh model with application," European Journal of Operational Research, Elsevier, vol. 185(2), pages 659-672, March.
    7. Debasis Kundu & Rameshwar D. Gupta, 2005. "Estimation of P[Y > X] for generalized exponential distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(3), pages 291-308, June.
    8. Balakrishnan, N. & Chan, P. S., 1998. "On the normal record values and associated inference," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 73-80, July.
    9. Jong-Wuu Wu & Hsiao-Chiao Tseng, 2007. "Statistical inference about the shape parameter of the Weibull distribution by upper record values," Statistical Papers, Springer, vol. 48(1), pages 95-129, January.
    10. Chan, Ping Shing, 1998. "Interval estimation of location and scale parameters based on record values," Statistics & Probability Letters, Elsevier, vol. 37(1), pages 49-58, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Wang & Huizhong Lin & Yuhlong Lio & Yogesh Mani Tripathi, 2022. "Interval Estimation of Generalized Inverted Exponential Distribution under Records Data: A Comparison Perspective," Mathematics, MDPI, vol. 10(7), pages 1-20, March.
    2. Francesca Condino & Filippo Domma & Giovanni Latorre, 2018. "Likelihood and Bayesian estimation of $$P(Y{," Statistical Papers, Springer, vol. 59(2), pages 467-485, June.
    3. Jana, Nabakumar & Bera, Samadrita, 2022. "Interval estimation of multicomponent stress–strength reliability based on inverse Weibull distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 95-119.
    4. Wang, Bing Xing & Yu, Keming & Coolen, Frank P.A., 2015. "Interval estimation for proportional reversed hazard family based on lower record values," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 115-122.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bing Xing & Yu, Keming & Coolen, Frank P.A., 2015. "Interval estimation for proportional reversed hazard family based on lower record values," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 115-122.
    2. Ayush Tripathi & Umesh Singh & Sanjay Kumar Singh, 2021. "Inferences for the DUS-Exponential Distribution Based on Upper Record Values," Annals of Data Science, Springer, vol. 8(2), pages 387-403, June.
    3. Aboeleneen, Z.A., 2010. "Inference for Weibull distribution under generalized order statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 26-36.
    4. Abhimanyu Singh Yadav & S. K. Singh & Umesh Singh, 2019. "Bayesian estimation of $$R=P[Y," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 905-917, October.
    5. Wong, Augustine C.M. & Wu, Yan Yan, 2009. "A note on interval estimation of P(X," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3650-3658, August.
    6. Gouet, Raúl & López, F. Javier & Maldonado, Lina P. & Sanz, Gerardo, 2014. "Statistical inference for the geometric distribution based on δ-records," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 21-32.
    7. Mustafa Nadar & Fatih Kızılaslan, 2014. "Classical and Bayesian estimation of $$P(X>Y)$$ P ( X > Y ) using upper record values from Kumaraswamy’s distribution," Statistical Papers, Springer, vol. 55(3), pages 751-783, August.
    8. A. Asgharzadeh & M. Kazemi & D. Kundu, 2017. "Estimation of $$P(X>Y)$$ P ( X > Y ) for Weibull distribution based on hybrid censored samples," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 489-498, January.
    9. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    10. Manoj Chacko & P. Thomas, 2008. "Estimation of parameters of bivariate normal distribution using concomitants of record values," Statistical Papers, Springer, vol. 49(2), pages 263-275, April.
    11. Hsieh, Ping-Hung, 2002. "An exploratory first step in teletraffic data modeling: evaluation of long-run performance of parameter estimators," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 263-283, August.
    12. Soliman, Ahmed A. & Abd-Ellah, Ahmed H. & Abou-Elheggag, Naser A. & Abd-Elmougod, Gamal A., 2012. "Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2471-2485.
    13. EryIlmaz, Serkan, 2010. "On system reliability in stress-strength setup," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 834-839, May.
    14. Hamid Mohtadi & Antu Panini Murshid, 2009. "Risk of catastrophic terrorism: an extreme value approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 537-559.
    15. Brook T. Russell & Whitney K. Huang, 2021. "Modeling short‐ranged dependence in block extrema with application to polar temperature data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    16. Bouslah, B. & Gharbi, A. & Pellerin, R., 2016. "Joint economic design of production, continuous sampling inspection and preventive maintenance of a deteriorating production system," International Journal of Production Economics, Elsevier, vol. 173(C), pages 184-198.
    17. M. J. S. Khan & Bushra Khatoon, 2020. "Statistical Inferences of $$R=P(X," Annals of Data Science, Springer, vol. 7(3), pages 525-545, September.
    18. El-Adll, Magdy E., 2011. "Predicting future lifetime based on random number of three parameters Weibull distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1842-1854.
    19. Kotb, M.S. & Raqab, M.Z., 2019. "Statistical inference for modified Weibull distribution based on progressively type-II censored data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 233-248.
    20. Yingjie Wang & Xinsheng Liu, 2022. "A New Point Process Regression Extreme Model Using a Dirichlet Process Mixture of Weibull Distribution," Mathematics, MDPI, vol. 10(20), pages 1-24, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:83:y:2015:i:c:p:26-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.