IDEAS home Printed from https://ideas.repec.org/a/vls/finstu/v20y2016i4p6-16.html
   My bibliography  Save this article

Systemic Risk And Cojumps In High Frequency Data

Author

Listed:
  • LUPU, Radu

    (Faculty of Economics and International Affairs, The Bucharest University of Economic Studies, Bucharest, Romania)

  • MATEESCU, Alexandra

    (School of Advanced Studies of the Romanian Academy, Bucharest, Romania)

Abstract

Univariate jump detection procedures have been widely studied in the field of statistics of high frequency data, whereas the extension of jump detection to a multivariate framework, in order to understand the correlation between asset returns, is more recent. Cojumps refer to the joint occurence of extreme price movements. The identification of cojumps is extremely important for investors who usually own portfolio of assets. Decisions regarding portofolio allocation, risk management, hedging and pricing can be based on this analysis. The objective of this paper is to investigate the existence of cojumps in European financial market, employing data on the shares of 12stock market indexes. The situations with identified cojumps will be used to identify simultaneous reactions of these markets in order to develop a measure of the systemic risk.

Suggested Citation

  • LUPU, Radu & MATEESCU, Alexandra, 2016. "Systemic Risk And Cojumps In High Frequency Data," Studii Financiare (Financial Studies), Centre of Financial and Monetary Research "Victor Slavescu", vol. 20(4), pages 6-16.
  • Handle: RePEc:vls:finstu:v:20:y:2016:i:4:p:6-16
    as

    Download full text from publisher

    File URL: ftp://www.eadr.ro/RePEc/vls/vls_pdf/vol20i4p6-16.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Liu & Francis A. Longstaff & Jun Pan, 2003. "Dynamic Asset Allocation with Event Risk," Journal of Finance, American Finance Association, vol. 58(1), pages 231-259, February.
    2. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    3. Monika Piazzesi, 2005. "Bond Yields and the Federal Reserve," Journal of Political Economy, University of Chicago Press, vol. 113(2), pages 311-344, April.
    4. Lee, Suzanne S. & Hannig, Jan, 2010. "Detecting jumps from Lévy jump diffusion processes," Journal of Financial Economics, Elsevier, vol. 96(2), pages 271-290, May.
    5. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    6. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    7. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    8. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
    9. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    10. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    11. Jérôme Lahaye & Sébastien Laurent & Christopher J. Neely, 2011. "Jumps, cojumps and macro announcements," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 893-921, September.
    12. Radu Lupu, 2014. "Simultaneity of Tail Events for Dynamic Conditional Distributions of Stock Market Index Returns," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 49-64, December.
    13. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
    14. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    15. Liu, Jun & Longstaff, Francis & Pan, Jun, 2001. "Dynamic Asset Allocation with Event Risk," University of California at Los Angeles, Anderson Graduate School of Management qt9fm6t5nb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    2. Giacomo Bormetti & Lucio Maria Calcagnile & Michele Treccani & Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2015. "Modelling systemic price cojumps with Hawkes factor models," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1137-1156, July.
    3. Christensen, Kim & Oomen, Roel & Podolskij, Mark, 2010. "Realised quantile-based estimation of the integrated variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 74-98, November.
    4. Sensoy, Ahmet & Serdengeçti, Süleyman, 2020. "Impact of portfolio flows and heterogeneous expectations on FX jumps: Evidence from an emerging market," International Review of Financial Analysis, Elsevier, vol. 68(C).
    5. Hanousek Jan & Kočenda Evžen & Novotný Jan, 2012. "The identification of price jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 53-77, January.
    6. Kshatriya, Saranya & Prasanna, Krishna, 2021. "Jump Interdependencies: Stochastic linkages among international stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    7. Piccotti, Louis R., 2018. "Jumps, cojumps, and efficiency in the spot foreign exchange market," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 49-67.
    8. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    9. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    10. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic asset price jumps and the performance of high frequency tests and measures," Monash Econometrics and Business Statistics Working Papers 14/17, Monash University, Department of Econometrics and Business Statistics.
    11. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    12. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    13. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    14. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "High-Frequency Jump Tests: Which Test Should We Use?," Papers 1708.09520, arXiv.org, revised Jan 2020.
    15. Jan Hanousek & Evzen Kocenda & Jan Novotny, 2014. "Price jumps on European stock markets," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 14(1), pages 10-22, March.
    16. Bollerslev, Tim & Li, Sophia Zhengzi & Todorov, Viktor, 2016. "Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 120(3), pages 464-490.
    17. Jan Novotn?? & Jan Hanousek & Ev??en Ko??enda, 2013. "Price Jump Indicators: Stock Market Empirics During the Crisis," William Davidson Institute Working Papers Series wp1050, William Davidson Institute at the University of Michigan.
    18. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    19. Nolte, Ingmar & Xu, Qi, 2015. "The economic value of volatility timing with realized jumps," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 45-59.
    20. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.

    More about this item

    Keywords

    jumps; cojumps; simultaneity indicator; high frequency data;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vls:finstu:v:20:y:2016:i:4:p:6-16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cfiarro.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Daniel Mateescu (email available below). General contact details of provider: https://edirc.repec.org/data/cfiarro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.