IDEAS home Printed from https://ideas.repec.org/a/ucp/jpolec/doi10.1086-722090.html
   My bibliography  Save this article

Social Networks with Unobserved Links

Author

Listed:
  • Arthur Lewbel
  • Xi Qu
  • Xun Tang

Abstract

We point-identify and estimate linear social network models without observing any network links. The required data consist of many small networks of individuals, such as classrooms or villages, with individuals who are each observed only once. We apply our estimator to data from Tennessee’s Project STAR (Student-Teacher Achievement Ratio). Without observing the latent network in each classroom, we identify and estimate peer and contextual effects on students’ performance in mathematics. We find that peer effects tend to be larger in bigger classes and that increasing peer effects would significantly improve students’ average test scores in some classes.

Suggested Citation

  • Arthur Lewbel & Xi Qu & Xun Tang, 2023. "Social Networks with Unobserved Links," Journal of Political Economy, University of Chicago Press, vol. 131(4), pages 898-946.
  • Handle: RePEc:ucp:jpolec:doi:10.1086/722090
    DOI: 10.1086/722090
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1086/722090
    Download Restriction: Access to the online full text or PDF requires a subscription.

    File URL: http://dx.doi.org/10.1086/722090
    Download Restriction: Access to the online full text or PDF requires a subscription.

    File URL: https://libkey.io/10.1086/722090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thomas S. Dee, 2004. "Teachers, Race, and Student Achievement in a Randomized Experiment," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 195-210, February.
    2. de Paula, Aureo & Rasul, Imran & Souza, Pedro, 2018. "Identifying Network Ties from Panel Data: Theory and an Application to Tax Competition," CEPR Discussion Papers 12792, C.E.P.R. Discussion Papers.
    3. Christoph Hauser & Michael Pfaffermayr & Gottfried Tappeiner & Janette Walde, 2009. "Social Capital Formation And Intra Familial Correlation: A Social Panel Perspective," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 54(03), pages 473-488.
    4. Bryan S. Graham, 2008. "Identifying Social Interactions Through Conditional Variance Restrictions," Econometrica, Econometric Society, vol. 76(3), pages 643-660, May.
    5. Aaron Sojourner, 2013. "Identification of Peer Effects with Missing Peer Data: Evidence from Project STAR," Economic Journal, Royal Economic Society, vol. 123(569), pages 574-605, June.
    6. Alan B. Krueger, 1999. "Experimental Estimates of Education Production Functions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 497-532.
    7. Lawrence E. Blume & William A. Brock & Steven N. Durlauf & Rajshri Jayaraman, 2015. "Linear Social Interactions Models," Journal of Political Economy, University of Chicago Press, vol. 123(2), pages 444-496.
    8. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    9. Diane Whitmore, 2005. "Resource and Peer Impacts on Girls' Academic Achievement: Evidence from a Randomized Experiment," American Economic Review, American Economic Association, vol. 95(2), pages 199-203, May.
    10. Vincent Boucher & Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2014. "Do Peers Affect Student Achievement? Evidence From Canada Using Group Size Variation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 91-109, January.
    11. Krueger, Alan B & Whitmore, Diane M, 2001. "The Effect of Attending a Small Class in the Early Grades on College-Test Taking and Middle School Test Results: Evidence from Project STAR," Economic Journal, Royal Economic Society, vol. 111(468), pages 1-28, January.
    12. Paul Goldsmith-Pinkham & Guido W. Imbens, 2013. "Social Networks and the Identification of Peer Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 253-264, July.
    13. Áureo de Paula & Imran Rasul & Pedro CL Souza, 2018. "Recovering social networks from panel data: identification, simulations and an application," CeMMAP working papers CWP58/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Antoni Calvó-Armengol & Eleonora Patacchini & Yves Zenou, 2009. "Peer Effects and Social Networks in Education," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(4), pages 1239-1267.
    15. Eleonora Patacchini & Yves Zenou, 2012. "Juvenile Delinquency and Conformism," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 28(1), pages 1-31.
    16. Liu, Xiaodong & Patacchini, Eleonora & Zenou, Yves, 2014. "Endogenous peer effects: local aggregate or local average?," Journal of Economic Behavior & Organization, Elsevier, vol. 103(C), pages 39-59.
    17. Aaron Sojourner, "undated". "Inference on Peer Effects with Missing Peer Data: Evidence from Project STAR," Working Papers 0109, Human Resources and Labor Studies, University of Minnesota (Twin Cities Campus).
    18. Lee, Lung-fei, 2007. "Identification and estimation of econometric models with group interactions, contextual factors and fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 333-374, October.
    19. Graham, Bryan S. & Hahn, Jinyong, 2005. "Identification and estimation of the linear-in-means model of social interactions," Economics Letters, Elsevier, vol. 88(1), pages 1-6, July.
    20. Xu Lin, 2010. "Identifying Peer Effects in Student Academic Achievement by Spatial Autoregressive Models with Group Unobservables," Journal of Labor Economics, University of Chicago Press, vol. 28(4), pages 825-860, October.
    21. Boozer, Michael A. & Cacciola, Stephen E., 2001. "Inside the 'Black Box' of Project Star: Estimation of Peer Effects Using Experimental Data," Center Discussion Papers 28524, Yale University, Economic Growth Center.
    22. Lin, Xu & Lee, Lung-fei, 2010. "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Elsevier, vol. 157(1), pages 34-52, July.
    23. Lung-fei Lee & Xiaodong Liu & Xu Lin, 2010. "Specification and estimation of social interaction models with network structures," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 145-176, July.
    24. Xu Lin, 2015. "Utilizing spatial autoregressive models to identify peer effects among adolescents," Empirical Economics, Springer, vol. 49(3), pages 929-960, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Paula, Aureo & Rasul, Imran & Souza, Pedro, 2018. "Identifying Network Ties from Panel Data: Theory and an Application to Tax Competition," CEPR Discussion Papers 12792, C.E.P.R. Discussion Papers.
    2. Federico Martellosio, 2020. "Non-Identifiability in Network Autoregressions," Papers 2011.11084, arXiv.org, revised Jun 2022.
    3. Yi Cao & Tao Zhou & Jian Gao, 2024. "Heterogeneous peer effects of college roommates on academic performance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Arthur Lewbel & Xi Qu & Xun Tang, 2024. "Ignoring measurement errors in social networks," The Econometrics Journal, Royal Economic Society, vol. 27(2), pages 171-187.
    5. Promit K. Chaudhuri & Sudipta Sarangi & Hector Tzavellas, 2023. "Games Under Network Uncertainty," Papers 2305.03124, arXiv.org, revised Jul 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Lewbel & Xi Qu & Xun Tang, 2021. "Social Networks with Mismeasured Links," Boston College Working Papers in Economics 1031, Boston College Department of Economics.
    2. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    3. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Patacchini, Eleonora & Hsieh, Chih-Sheng & Lin, Xu, 2019. "Social Interaction Methods," CEPR Discussion Papers 14141, C.E.P.R. Discussion Papers.
    5. Arthur Lewbel & Xi Qu & Xun Tang, 2024. "Ignoring measurement errors in social networks," The Econometrics Journal, Royal Economic Society, vol. 27(2), pages 171-187.
    6. Kuersteiner, Guido M. & Prucha, Ingmar R. & Zeng, Ying, 2023. "Efficient peer effects estimators with group effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 2155-2194.
    7. Topa, Giorgio & Zenou, Yves, 2015. "Neighborhood and Network Effects," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 561-624, Elsevier.
    8. Boucher, Vincent & Fortin, Bernard, 2015. "Some Challenges in the Empirics of the Effects of Networks," IZA Discussion Papers 8896, Institute of Labor Economics (IZA).
    9. Alexandra de Gendre & Nicolás Salamanca, 2020. "On the Mechanisms of Ability Peer Effects," Melbourne Institute Working Paper Series wp2020n19, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    10. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
    11. Chih‐Sheng Hsieh & Xu Lin, 2021. "Social interactions and social preferences in social networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 165-189, March.
    12. Bryan S. Graham, 2018. "Identifying and Estimating Neighborhood Effects," Journal of Economic Literature, American Economic Association, vol. 56(2), pages 450-500, June.
    13. Yingyao Hu & Zhongjian Lin, 2018. "Misclassification and the hidden silent rivalry," CeMMAP working papers CWP12/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Arun Advani & Bansi Malde, 2014. "Empirical methods for networks data: social effects, network formation and measurement error," IFS Working Papers W14/34, Institute for Fiscal Studies.
    15. Hsieh, Chih-Sheng & Lin, Xu, 2017. "Gender and racial peer effects with endogenous network formation," Regional Science and Urban Economics, Elsevier, vol. 67(C), pages 135-147.
    16. Arun Advani & Bansi Malde, 2018. "Methods to identify linear network models: a review," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 154(1), pages 1-16, December.
    17. Guo, Juncong & Qu, Xi, 2022. "Competition in household human capital investments: Strength, motivations and consequences," Journal of Development Economics, Elsevier, vol. 158(C).
    18. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    19. Chih‐Sheng Hsieh & Hans van Kippersluis, 2018. "Smoking initiation: Peers and personality," Quantitative Economics, Econometric Society, vol. 9(2), pages 825-863, July.
    20. Elizabeth U. Cascio & Diane Whitmore Schanzenbach, 2016. "First in the Class? Age and the Education Production Function," Education Finance and Policy, MIT Press, vol. 11(3), pages 225-250, Summer.

    More about this item

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucp:jpolec:doi:10.1086/722090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journals Division (email available below). General contact details of provider: https://www.journals.uchicago.edu/JPE .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.