IDEAS home Printed from https://ideas.repec.org/a/tdt/annals/vxviii-supplementy2012p472-475.html
   My bibliography  Save this article

Stochastic Volatility Models For Financial Time Series Analysis

Author

Listed:
  • FELICIA RAMONA BIRĂU

    (UNIVERSITY OF CRAIOVA, FACULTY OF ECONOMICS AND BUSINES ADMINISTRATION)

Abstract

This article highlights a comprehensive and approachable perspective to stochastic volatility models for financial time series analysis. Financial time series represent a distinctive category in the economic field, with highly dynamic characteristics, especially in times of financial crisis. Beyond its highly empirical behavior, modeling volatility of financial asset returns aims to improve forecast accuracy. The stochastic volatility models analyzed in this article include the autoregressive conditional heteroscedastic model (ARCH), the generalized autoregressive conditional heteroscedastic (GARCH) model and the exponential generalized autoregressive conditional heteroscedastic (EGARCH) model.

Suggested Citation

  • Felicia Ramona Birău, 2012. "Stochastic Volatility Models For Financial Time Series Analysis," Anale. Seria Stiinte Economice. Timisoara, Faculty of Economics, Tibiscus University in Timisoara, vol. 0, pages 472-475, November.
  • Handle: RePEc:tdt:annals:v:xviii/supplement:y:2012:p:472-475
    as

    Download full text from publisher

    File URL: http://fse.tibiscus.ro/anale/Lucrari2012_2/AnaleFSE_2012_2_077.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F, 1993. "Common Persistence in Conditional Variances," Econometrica, Econometric Society, vol. 61(1), pages 167-186, January.
    2. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    3. Ronald J. Mahieu & Peter C. Schotman, 1998. "An empirical application of stochastic volatility models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(4), pages 333-360.
    4. Mills,Terence C. & Markellos,Raphael N., 2008. "The Econometric Modelling of Financial Time Series," Cambridge Books, Cambridge University Press, number 9780521883818.
    5. Mills,Terence C. & Markellos,Raphael N., 2008. "The Econometric Modelling of Financial Time Series," Cambridge Books, Cambridge University Press, number 9780521710091, July.
    6. Strozzi, Fernanda & Zaldı́var, José-Manuel & Zbilut, Joseph P, 2002. "Application of nonlinear time series analysis techniques to high-frequency currency exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(3), pages 520-538.
    7. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noureddine Benlagha, 2014. "Volatility Linkage of Nominal and Index-linked Bond Returns: A Multivariate BEKK-GARCH Approach," Review of Economics & Finance, Better Advances Press, Canada, vol. 4, pages 49-60, November.
    2. Atilla Aydın, 2024. "Economic Factors Affecting the Collective Bargaining Agreement Coverage Rate in Turkey: Cointegration Approach," Istanbul Journal of Economics-Istanbul Iktisat Dergisi, Istanbul Journal of Economics-Istanbul Iktisat Dergisi, vol. 0(40), pages 134-150, June.
    3. Bahram Adrangi & Arjun Chatrath & Madhuparna Kolay & Kambiz Raffiee, 2021. "Dynamic Responses of Standard and Poor’s Regional Bank Index to the U.S. Fear Index, VIX," JRFM, MDPI, vol. 14(3), pages 1-18, March.
    4. Luca Bagnato & Valerio Potì & Maria Zoia, 2015. "The role of orthogonal polynomials in adjusting hyperpolic secant and logistic distributions to analyse financial asset returns," Statistical Papers, Springer, vol. 56(4), pages 1205-1234, November.
    5. Ibrahim Chowdhury & Lucio Sarno, 2004. "Time‐Varying Volatility in the Foreign Exchange Market: New Evidence on its Persistence and on Currency Spillovers," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 759-793, June.
    6. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    7. Alberto Humala & Gabriel Rodriguez, 2013. "Some stylized facts of return in the foreign exchange and stock markets in Peru," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 30(2), pages 139-158, May.
    8. Brian Opiyo Yalla & Ferdinand Okoth Othieno, 2023. "Modelling delayed correlation between interest rates and equity market returns," SN Business & Economics, Springer, vol. 3(2), pages 1-24, February.
    9. Stefanescu, Razvan & Dumitriu, Ramona, 2015. "Conţinutul analizei seriilor de timp financiare [The Essentials of the Analysis of Financial Time Series]," MPRA Paper 67175, University Library of Munich, Germany.
    10. Joe Hirschberg & Jenny Lye, 2021. "Estimating risk premiums for regulated firms when accounting for reference-day variation and high-order moments of return volatility," Environment Systems and Decisions, Springer, vol. 41(3), pages 455-467, September.
    11. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    12. De Santis, Paola & Drago, Carlo, 2014. "Asimmetria del rischio sistematico dei titoli immobiliari americani: nuove evidenze econometriche [Systematic Risk Asymmetry of the American Real Estate Securities: Some New Econometric Evidence]," MPRA Paper 59381, University Library of Munich, Germany.
    13. Mircea ASANDULUI, 2012. "On forecasting stock options volatility: evidence from London international financial futures and options exchange," Anale. Seria Stiinte Economice. Timisoara, Faculty of Economics, Tibiscus University in Timisoara, vol. 0, pages 505-511, May.
    14. repec:cte:wsrepe:ws142618 is not listed on IDEAS
    15. Azar, Samih Antoine, 2010. "Testing the Expectations Hypothesis on Corporate Bond Yields," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 6(01-2), pages 1-11, April.
    16. Kundu, Srikanta & Paul, Amartya, 2022. "Effect of economic policy uncertainty on stock market return and volatility under heterogeneous market characteristics," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 597-612.
    17. Wugan Cai & Jiafeng Pan, 2017. "Stochastic Differential Equation Models for the Price of European CO 2 Emissions Allowances," Sustainability, MDPI, vol. 9(2), pages 1-12, February.
    18. Gurjeet Dhesi & Bilal Shakeel & Marcel Ausloos, 2021. "Modelling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach," Annals of Operations Research, Springer, vol. 299(1), pages 1397-1410, April.
    19. Slim Mseddi & Noureddine Benlagha, 2017. "An Analysis of Spillovers Between Islamic and Conventional Stock Bank Returns: Evidence from the GCC Countries," Multinational Finance Journal, Multinational Finance Journal, vol. 21(2), pages 91-132, June.
    20. Sánchez Lasheras, Fernando & de Cos Juez, Francisco Javier & Suárez Sánchez, Ana & Krzemień, Alicja & Riesgo Fernández, Pedro, 2015. "Forecasting the COMEX copper spot price by means of neural networks and ARIMA models," Resources Policy, Elsevier, vol. 45(C), pages 37-43.
    21. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2020. "Volatility forecasts using stochastic volatility models with nonlinear leverage effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 143-154, March.

    More about this item

    Keywords

    stochastic volatility class of models; high-frequency data; stationary time series; autoregressive conditional heteroscedastic model; financial asset returns;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tdt:annals:v:xviii/supplement:y:2012:p:472-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ramona Violeta Vasilescu The email address of this maintainer does not seem to be valid anymore. Please ask Ramona Violeta Vasilescu to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/fettiro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.