IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i1p186-203.html
   My bibliography  Save this article

Single-period inventory model for one-level assembly system with stochastic lead times and demand

Author

Listed:
  • Faicel Hnaien
  • Alexandre Dolgui
  • Desheng Dash Wu

Abstract

Replenishment planning of an assembly system with one type of finished product assembled from different types of components is considered. The components are procured from diverse external suppliers to satisfy finished product demand. It is supposed that the component lead times and finished product demand are random discrete variables. The assembly company must determine what are the best quantities of components and when is the right time to order. The objective is to minimise the total cost which is composed of holding component costs, tardiness penalties, lost sales and surplus item costs for finished products. A single-period analytical model is proposed. Several properties of the objective function are proven. They are used to develop a Branch and Bound algorithm. Numerical tests for the algorithm are presented. Five heuristics based on Newsvendor model for lead time and demand are proposed and compared with the Branch and Bound algorithm. These tests show that the suggested Branch and Bound algorithm can solve large size problems within a short time. The proposed heuristics but one are not competitive with the Branch and Bound algorithm. The truncated version of Branch and Bound gives better results. The model suggested is better adapted to actual contract assembler environments, more realistic and can better approximate real-life industrial situations. The proposed exact algorithm provides optimal solutions for all discrete distributions of probabilities of lead times and demand. A new general approach to design such discrete optimisation algorithms is presented.

Suggested Citation

  • Faicel Hnaien & Alexandre Dolgui & Desheng Dash Wu, 2016. "Single-period inventory model for one-level assembly system with stochastic lead times and demand," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 186-203, January.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:1:p:186-203
    DOI: 10.1080/00207543.2015.1066518
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1066518
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1066518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin X. He & Susan H. Xu & J. Keith Ord & Jack C. Hayya, 1998. "An Inventory Model with Order Crossover," Operations Research, INFORMS, vol. 46(3-supplem), pages 112-119, June.
    2. Louly, Mohamed-Aly Ould & Dolgui, Alexandre, 2009. "Calculating safety stocks for assembly systems with random component procurement lead times: A branch and bound algorithm," European Journal of Operational Research, Elsevier, vol. 199(3), pages 723-731, December.
    3. Funaki, Kenichi, 2012. "Strategic safety stock placement in supply chain design with due-date based demand," International Journal of Production Economics, Elsevier, vol. 135(1), pages 4-13.
    4. Louly, Mohamed-Aly & Dolgui, Alexandre, 2012. "A note on analytic calculation of planned lead times for assembly systems under POQ policy and service level constraint," International Journal of Production Economics, Elsevier, vol. 140(2), pages 778-781.
    5. van Donselaar, K. H. & Gubbels, B. J., 2002. "How to release orders in order to minimise system inventory and system nervousness?," International Journal of Production Economics, Elsevier, vol. 78(3), pages 335-343, August.
    6. Dolgui, Alexandre & Ould-Louly, Mohamed-Aly, 2002. "A model for supply planning under lead time uncertainty," International Journal of Production Economics, Elsevier, vol. 78(2), pages 145-152, July.
    7. Inderfurth, Karl, 2009. "How to protect against demand and yield risks in MRP systems," International Journal of Production Economics, Elsevier, vol. 121(2), pages 474-481, October.
    8. Enns, S. T., 2002. "MRP performance effects due to forecast bias and demand uncertainty," European Journal of Operational Research, Elsevier, vol. 138(1), pages 87-102, April.
    9. Louly, Mohamed-Aly & Dolgui, Alexandre, 2013. "Optimal MRP parameters for a single item inventory with random replenishment lead time, POQ policy and service level constraint," International Journal of Production Economics, Elsevier, vol. 143(1), pages 35-40.
    10. Chengbin Chu & Jean‐Marie Proth & Xiaolan Xie, 1993. "Supply management in assembly systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 933-949, December.
    11. Mula, J. & Poler, R. & Garcia-Sabater, J.P. & Lario, F.C., 2006. "Models for production planning under uncertainty: A review," International Journal of Production Economics, Elsevier, vol. 103(1), pages 271-285, September.
    12. Louly, Mohamed-Aly & Dolgui, Alexandre, 2011. "Optimal time phasing and periodicity for MRP with POQ policy," International Journal of Production Economics, Elsevier, vol. 131(1), pages 76-86, May.
    13. Jing-Sheng Song & Candace A. Yano & Panupol Lerssrisuriya, 2000. "Contract Assembly: Dealing with Combined Supply Lead Time and Demand Quantity Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 2(3), pages 287-296, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Zhe & Wang, Chen & Yin, Qian, 2018. "Coordinating overseas and local sourcing through a capacitated expediting transportation policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 258-271.
    2. Lv, Fei & Xiao, Lei & Xu, Minghui & Guan, Xu, 2019. "Quantity-payment versus two-part tariff contracts in an assembly system with asymmetric cost information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 60-80.
    3. Ben-Ammar, Oussama & Dolgui, Alexandre & Wu, Desheng Dash, 2018. "Planned lead times optimization for multi-level assembly systems under uncertainties," Omega, Elsevier, vol. 78(C), pages 39-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louly, Mohamed-Aly & Dolgui, Alexandre, 2011. "Optimal time phasing and periodicity for MRP with POQ policy," International Journal of Production Economics, Elsevier, vol. 131(1), pages 76-86, May.
    2. Ben-Ammar, Oussama & Dolgui, Alexandre & Wu, Desheng Dash, 2018. "Planned lead times optimization for multi-level assembly systems under uncertainties," Omega, Elsevier, vol. 78(C), pages 39-56.
    3. Manuel Díaz-Madroñero & Josefa Mula & Mariano Jiménez & David Peidro, 2017. "A rolling horizon approach for material requirement planning under fuzzy lead times," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2197-2211, April.
    4. Ben-Ammar, Oussama & Bettayeb, Belgacem & Dolgui, Alexandre, 2019. "Optimization of multi-period supply planning under stochastic lead times and a dynamic demand," International Journal of Production Economics, Elsevier, vol. 218(C), pages 106-117.
    5. Louly, Mohamed-Aly & Dolgui, Alexandre & Hnaien, Faicel, 2008. "Supply planning for single-level assembly system with stochastic component delivery times and service-level constraint," International Journal of Production Economics, Elsevier, vol. 115(1), pages 236-247, September.
    6. Lin, James T. & Chen, Tzu-Li & Lin, Yen-Ting, 2009. "Critical material planning for TFT-LCD production industry," International Journal of Production Economics, Elsevier, vol. 122(2), pages 639-655, December.
    7. Barros, Júlio & Cortez, Paulo & Carvalho, M. Sameiro, 2021. "A systematic literature review about dimensioning safety stock under uncertainties and risks in the procurement process," Operations Research Perspectives, Elsevier, vol. 8(C).
    8. Borodin, Valeria & Dolgui, Alexandre & Hnaien, Faicel & Labadie, Nacima, 2016. "Component replenishment planning for a single-level assembly system under random lead times: A chance constrained programming approach," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 79-86.
    9. Sivadasan, Suja & Smart, Janet & Huaccho Huatuco, Luisa & Calinescu, Anisoara, 2013. "Reducing schedule instability by identifying and omitting complexity-adding information flows at the supplier–customer interface," International Journal of Production Economics, Elsevier, vol. 145(1), pages 253-262.
    10. Ke Fu & Vernon Ning Hsu & Chung-Yee Lee, 2006. "Inventory and Production Decisions for an Assemble-to-Order System with Uncertain Demand and Limited Assembly Capacity," Operations Research, INFORMS, vol. 54(6), pages 1137-1150, December.
    11. Gel, Esma S. & Salman, F. Sibel, 2022. "Dynamic ordering decisions with approximate learning of supply yield uncertainty," International Journal of Production Economics, Elsevier, vol. 243(C).
    12. Rappold, James A. & Yoho, Keenan D., 2014. "Setting safety stocks for stable rotation cycle schedules," International Journal of Production Economics, Elsevier, vol. 156(C), pages 146-158.
    13. Shi Chen & Hau Lee, 2017. "Incentive Alignment and Coordination of Project Supply Chains," Management Science, INFORMS, vol. 63(4), pages 1011-1025, April.
    14. Milne, R. John & Mahapatra, Santosh & Wang, Chi-Tai, 2015. "Optimizing planned lead times for enhancing performance of MRP systems," International Journal of Production Economics, Elsevier, vol. 167(C), pages 220-231.
    15. Vernon Ning Hsu & Chung Yee Lee & Kut C. So, 2007. "Managing components for assemble‐to‐order products with lead‐time‐dependent pricing: The full‐shipment model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 510-523, August.
    16. Hnaien, Faicel & Afsar, Hasan Murat, 2017. "Robust single-item lot-sizing problems with discrete-scenario lead time," International Journal of Production Economics, Elsevier, vol. 185(C), pages 223-229.
    17. Slama, Ilhem & Ben-Ammar, Oussama & Thevenin, Simon & Dolgui, Alexandre & Masmoudi, Faouzi, 2022. "Stochastic program for disassembly lot-sizing under uncertain component refurbishing lead times," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1183-1198.
    18. Klaus Altendorfer & Thomas Felberbauer & Herbert Jodlbauer, 2018. "Effects of forecast errors on optimal utilisation in aggregate production planning with stochastic customer demand," Papers 1812.00773, arXiv.org.
    19. Ould-Louly, Mohamed-Aly & Dolgui, Alexandre, 2004. "The MPS parameterization under lead time uncertainty," International Journal of Production Economics, Elsevier, vol. 90(3), pages 369-376, August.
    20. Louly, Mohamed-Aly Ould & Dolgui, Alexandre, 2009. "Calculating safety stocks for assembly systems with random component procurement lead times: A branch and bound algorithm," European Journal of Operational Research, Elsevier, vol. 199(3), pages 723-731, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:1:p:186-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.