IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v17y2017i8p998-1013.html
   My bibliography  Save this article

Implications of global emission policy scenarios for domestic agriculture: a New Zealand case study

Author

Listed:
  • Zack Dorner
  • Suzi Kerr

Abstract

Agricultural GHG mitigation policies are important if ambitious climate change goals are to be achieved, and have the potential to significantly lower global mitigation costs [Reisinger, A., Havlik, P., Riahi, K., van Vliet, O., Obersteiner, M., & Herrero, M. (2013). Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change, 117, 677–690]. In the post-Paris world of ‘nationally determined contributions’ to mitigation, the prospects for agricultural mitigation policies may rest on whether they are in the national economic interest of large agricultural producers. New Zealand is a major exporter of livestock products; this article uses New Zealand as a case study to consider the policy implications of three global policy scenarios at the global, national and farm levels. Building on global modelling, a model dairy farm and a model sheep and beef farm are used to estimate the changes in profit when agricultural emissions are priced and mitigated globally or not, and priced domestically or not, in 2020. Related to these scenarios is the metric or GHG exchange rate. Most livestock emissions are non-CO2, with methane being particularly sensitive to the choice of metric. The results provide evidence that farm profitability is more sensitive to differing international policy scenarios than national economic welfare. The impact of the choice of metric is not as great as the impact of whether other countries mitigate agricultural emissions or not. Livestock farmers do best when agricultural emissions are not priced, as livestock commodity prices rise significantly due to competition for land from forestry. However, efficient farmers may still see a rise in profitability when agricultural emissions are fully priced worldwide.Policy relevanceExempting agricultural emissions from mitigation significantly increases the costs of limiting warming to 2 °C, placing the burden on other sectors. However, there may be a large impact on farmers if agricultural emissions are priced domestically when other countries are not doing the same. The impacts of global and national climate policies on farmers need to be better understood in order for climate policies to be politically sustainable. Transitional assistance that is not linked to emission levels could help, as long as the incentives to mitigate are maintained. In the long run, efficient farmers may benefit from climate policy; international efforts should focus on mitigation options and effective domestic policy development, rather than on metrics.

Suggested Citation

  • Zack Dorner & Suzi Kerr, 2017. "Implications of global emission policy scenarios for domestic agriculture: a New Zealand case study," Climate Policy, Taylor & Francis Journals, vol. 17(8), pages 998-1013, November.
  • Handle: RePEc:taf:tcpoxx:v:17:y:2017:i:8:p:998-1013
    DOI: 10.1080/14693062.2016.1215285
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14693062.2016.1215285
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anastasiadis, Simon & Kerr, Suzi, 2012. "Mitigation and Heterogeneity in Management Practices on New Zealand Dairy Farms," 2012 Conference, August 31, 2012, Nelson, New Zealand 136039, New Zealand Agricultural and Resource Economics Society.
    2. Suzi Kerr & Wei Zhang, 2009. "Allocation of New Zealand Units within Agriculture in the New Zealand Emissions Trading System," Working Papers 09_16, Motu Economic and Public Policy Research.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:17:y:2017:i:8:p:998-1013. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.