IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v7y2007i4p389-396.html
   My bibliography  Save this article

On the feasibility of portfolio optimization under expected shortfall

Author

Listed:
  • Stefano Ciliberti
  • Imre Kondor
  • Marc Mezard

Abstract

We address the problem of portfolio optimization under the simplest coherent risk measure, i.e. the expected shortfall. As is well known, one can map this problem into a linear programming setting. For some values of the external parameters, when the available time series is too short, portfolio optimization is ill-posed because it leads to unbounded positions, infinitely short on some assets and infinitely long on others. As first observed by Kondor and coworkers, this phenomenon is actually a phase transition. We investigate the nature of this transition by means of a replica approach.

Suggested Citation

  • Stefano Ciliberti & Imre Kondor & Marc Mezard, 2007. "On the feasibility of portfolio optimization under expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 389-396.
  • Handle: RePEc:taf:quantf:v:7:y:2007:i:4:p:389-396
    DOI: 10.1080/14697680701422089
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680701422089
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680701422089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    2. Frey, Rudiger & McNeil, Alexander J., 2002. "VaR and expected shortfall in portfolios of dependent credit risks: Conceptual and practical insights," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1317-1334, July.
    3. Kondor, Imre & Pafka, Szilard & Nagy, Gabor, 2007. "Noise sensitivity of portfolio selection under various risk measures," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1545-1573, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    2. Papp, Gábor & Caccioli, Fabio & Kondor, Imre, 2019. "Bias-variance trade-off in portfolio optimization under expected shortfall with ℓ 2 regularization," LSE Research Online Documents on Economics 100294, London School of Economics and Political Science, LSE Library.
    3. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2014. "$L_p$ regularized portfolio optimization," Papers 1404.4040, arXiv.org.
    4. Martin Herdegen & Nazem Khan, 2020. "Mean-$\rho$ portfolio selection and $\rho$-arbitrage for coherent risk measures," Papers 2009.05498, arXiv.org, revised Jul 2021.
    5. Anastasis Kratsios, 2019. "Partial Uncertainty and Applications to Risk-Averse Valuation," Papers 1909.13610, arXiv.org, revised Oct 2019.
    6. Papp, Gábor & Kondor, Imre & Caccioli, Fabio, 2021. "Optimizing expected shortfall under an ℓ1 constraint—an analytic approach," LSE Research Online Documents on Economics 111051, London School of Economics and Political Science, LSE Library.
    7. Shinzato, Takashi, 2018. "Maximizing and minimizing investment concentration with constraints of budget and investment risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 986-993.
    8. Giovanni Bonaccolto, 2021. "Quantile– based portfolios: post– model– selection estimation with alternative specifications," Computational Management Science, Springer, vol. 18(3), pages 355-383, July.
    9. Jean-Philippe Bouchaud & Matteo Marsili & Jean-Pierre Nadal, 2023. "Application of spin glass ideas in social sciences, economics and finance," Papers 2306.16165, arXiv.org.
    10. Martin Herdegen & Nazem Khan, 2022. "Mean‐ρ$\rho$ portfolio selection and ρ$\rho$‐arbitrage for coherent risk measures," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 226-272, January.
    11. Giovanni Bonaccolto, 2019. "Critical Decisions for Asset Allocation via Penalized Quantile Regression," Papers 1908.04697, arXiv.org.
    12. G'abor Papp & Imre Kondor & Fabio Caccioli, 2021. "Optimizing Expected Shortfall under an $\ell_1$ constraint -- an analytic approach," Papers 2103.04375, arXiv.org.
    13. G'abor Papp & Fabio Caccioli & Imre Kondor, 2016. "Bias-variance trade-off in portfolio optimization under Expected Shortfall with $\ell_2$ regularization," Papers 1602.08297, arXiv.org, revised Jul 2018.
    14. Imre Kondor & G'abor Papp & Fabio Caccioli, 2016. "Analytic solution to variance optimization with no short-selling," Papers 1612.07067, arXiv.org, revised Jan 2017.
    15. Thapar, Rishi & Minsky, Bernard & Obradovic, M & Tang, Qi, 2009. "Applying a global optimisation algorithm to Fund of Hedge Funds portfolio optimisation," MPRA Paper 17099, University Library of Munich, Germany.
    16. Caccioli, Fabio & Kondor, Imre & Papp, Gábor, 2015. "Portfolio optimization under expected shortfall: contour maps of estimation error," LSE Research Online Documents on Economics 119463, London School of Economics and Political Science, LSE Library.
    17. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    18. Imre Kondor, 2014. "Estimation Error of Expected Shortfall," Papers 1402.5534, arXiv.org.
    19. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    20. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2016. "Liquidity Risk And Instabilities In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-28, August.
    21. Imre Kondor & Fabio Caccioli & G'abor Papp & Matteo Marsili, 2015. "Contour map of estimation error for Expected Shortfall," Papers 1502.06217, arXiv.org.
    22. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    23. Kristoffer Andersson & Cornelis W. Oosterlee, 2023. "D-TIPO: Deep time-inconsistent portfolio optimization with stocks and options," Papers 2308.10556, arXiv.org, revised Sep 2023.
    24. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    25. Axel Pruser & Imre Kondor & Andreas Engel, 2021. "Aspects of a phase transition in high-dimensional random geometry," Papers 2105.04395, arXiv.org, revised Jun 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fermanian, Jean-David & Scaillet, Olivier, 2005. "Sensitivity analysis of VaR and Expected Shortfall for portfolios under netting agreements," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 927-958, April.
    2. Marcell Béli & Kata Váradi, 2017. "A possible methodology for determining the initial margin," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 16(2), pages 119-147.
    3. Karma, Otto & Sander, Priit, 2006. "The impact of financial leverage on risk of equity measured by loss-oriented risk measures: An option pricing approach," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1340-1356, December.
    4. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    5. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, December.
    6. Alessandra Carleo & Francesco Cesarone & Andrea Gheno & Jacopo Maria Ricci, 2017. "Approximating exact expected utility via portfolio efficient frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 115-143, November.
    7. Szego, Giorgio, 2005. "Measures of risk," European Journal of Operational Research, Elsevier, vol. 163(1), pages 5-19, May.
    8. Haoyu Chen & Tiantian Mao & Fan Yang, 2024. "Estimation of the Adjusted Standard-deviatile for Extreme Risks," Papers 2411.07203, arXiv.org.
    9. Imre Kondor, 2014. "Estimation Error of Expected Shortfall," Papers 1402.5534, arXiv.org.
    10. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    11. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    12. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    13. Burzoni, Matteo & Munari, Cosimo & Wang, Ruodu, 2022. "Adjusted Expected Shortfall," Journal of Banking & Finance, Elsevier, vol. 134(C).
    14. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    15. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    16. Haoyu Chen & Tiantian Mao & Fan Yang, 2024. "Estimation of the adjusted standard‐deviatile for extreme risks," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 643-671, June.
    17. Jing Li & Mingxin Xu, 2013. "Optimal Dynamic Portfolio with Mean-CVaR Criterion," Risks, MDPI, vol. 1(3), pages 1-29, November.
    18. Giacomo Livan & Jun-ichi Inoue & Enrico Scalas, 2012. "On the non-stationarity of financial time series: impact on optimal portfolio selection," Papers 1205.0877, arXiv.org, revised Jul 2012.
    19. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    20. Cesarone, Francesco & Mango, Fabiomassimo & Mottura, Carlo Domenico & Ricci, Jacopo Maria & Tardella, Fabio, 2020. "On the stability of portfolio selection models," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 210-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:7:y:2007:i:4:p:389-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.