IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1205.0877.html
   My bibliography  Save this paper

On the non-stationarity of financial time series: impact on optimal portfolio selection

Author

Listed:
  • Giacomo Livan
  • Jun-ichi Inoue
  • Enrico Scalas

Abstract

We investigate the possible drawbacks of employing the standard Pearson estimator to measure correlation coefficients between financial stocks in the presence of non-stationary behavior, and we provide empirical evidence against the well-established common knowledge that using longer price time series provides better, more accurate, correlation estimates. Then, we investigate the possible consequences of instabilities in empirical correlation coefficient measurements on optimal portfolio selection. We rely on previously published works which provide a framework allowing to take into account possible risk underestimations due to the non-optimality of the portfolio weights being used in order to distinguish such non-optimality effects from risk underestimations genuinely due to non-stationarities. We interpret such results in terms of instabilities in some spectral properties of portfolio correlation matrices.

Suggested Citation

  • Giacomo Livan & Jun-ichi Inoue & Enrico Scalas, 2012. "On the non-stationarity of financial time series: impact on optimal portfolio selection," Papers 1205.0877, arXiv.org, revised Jul 2012.
  • Handle: RePEc:arx:papers:1205.0877
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1205.0877
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pafka, Szilárd & Kondor, Imre, 2004. "Estimated correlation matrices and portfolio optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 623-634.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Douglas Castilho & Tharsis T. P. Souza & Soong Moon Kang & Jo~ao Gama & Andr'e C. P. L. F. de Carvalho, 2021. "Forecasting Financial Market Structure from Network Features using Machine Learning," Papers 2110.11751, arXiv.org.
    2. Matkovskyy, Roman & Jalan, Akanksha & Dowling, Michael & Bouraoui, Taoufik, 2021. "From bottom ten to top ten: The role of cryptocurrencies in enhancing portfolio return of poorly performing stocks," Finance Research Letters, Elsevier, vol. 38(C).
    3. Raddant, Matthias & Wagner, Friedrich, 2013. "Phase transition in the S&P stock market," Kiel Working Papers 1846, Kiel Institute for the World Economy (IfW Kiel).
    4. Gidea, Marian & Goldsmith, Daniel & Katz, Yuri & Roldan, Pablo & Shmalo, Yonah, 2020. "Topological recognition of critical transitions in time series of cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    5. Marcaccioli, Riccardo & Livan, Giacomo, 2020. "Maximum entropy approach to multivariate time series randomization," LSE Research Online Documents on Economics 115284, London School of Economics and Political Science, LSE Library.
    6. Chakrabarti, Arnab & Chakrabarti, Anindya S., 2020. "Fractional Differencing: (In)stability of Spectral Structure and Risk Measures of Financial Networks," IIMA Working Papers WP 2020-07-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    7. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    8. Marian Gidea & Daniel Goldsmith & Yuri Katz & Pablo Roldan & Yonah Shmalo, 2018. "Topological recognition of critical transitions in time series of cryptocurrencies," Papers 1809.00695, arXiv.org.
    9. Bertram During & Nicos Georgiou & Enrico Scalas, 2016. "A stylized model for wealth distribution," Papers 1609.08978, arXiv.org, revised Jul 2021.
    10. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2016. "What does past correlation structure tell us about the future? An answer from network filtering," Papers 1605.08908, arXiv.org.
    11. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Risk diversification: a study of persistence with a filtered correlation-network approach," Papers 1410.5621, arXiv.org.
    12. Li, Yan & Jiang, Xiong-Fei & Tian, Yue & Li, Sai-Ping & Zheng, Bo, 2019. "Portfolio optimization based on network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 671-681.
    13. Alessio Emanuele Biondo & Alessandro Pluchino & Andrea Rapisarda & Dirk Helbing, 2013. "Are Random Trading Strategies More Successful than Technical Ones?," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.
    14. James, Nick & Menzies, Max, 2023. "An exploration of the mathematical structure and behavioural biases of 21st century financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    15. Polanco-Martínez, J.M. & Fernández-Macho, J. & Neumann, M.B. & Faria, S.H., 2018. "A pre-crisis vs. crisis analysis of peripheral EU stock markets by means of wavelet transform and a nonlinear causality test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1211-1227.
    16. A. E. Biondo & A. Pluchino & A. Rapisarda & D. Helbing, 2013. "Are random trading strategies more successful than technical ones?," Papers 1303.4351, arXiv.org, revised Jul 2013.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei & Zhang, Wei-Guo, 2010. "The admissible portfolio selection problem with transaction costs and an improved PSO algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2070-2076.
    2. Rudi Schafer & Nils Fredrik Nilsson & Thomas Guhr, 2010. "Power mapping with dynamical adjustment for improved portfolio optimization," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 107-119.
    3. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    4. Schäfer, Rudi & Guhr, Thomas, 2010. "Local normalization: Uncovering correlations in non-stationary financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3856-3865.
    5. Jerome Garnier-Brun & Michael Benzaquen & Stefano Ciliberti & Jean-Philippe Bouchaud, 2021. "A new spin on optimal portfolios and ecological equilibria," Papers 2104.00668, arXiv.org, revised Oct 2021.
    6. Li, Yan & Jiang, Xiong-Fei & Tian, Yue & Li, Sai-Ping & Zheng, Bo, 2019. "Portfolio optimization based on network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 671-681.
    7. El Alaoui, Marwane, 2015. "Random matrix theory and portfolio optimization in Moroccan stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 92-99.
    8. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    9. Muhammad Husnain & Arshad Hassan & Eric Lamarque, 2016. "Shrinking the Variance-Covariance Matrix: Simpler is Better," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 21(1), pages 1-21, Jan-June.
    10. Woźny, Jakub & Jaworski, Piotr & Jelito, Damian & Pitera, Marcin & Wyłomańska, Agnieszka, 2025. "Gaussian dependence structure pairwise goodness-of-fit testing based on conditional covariance and the 20/60/20 rule," Journal of Multivariate Analysis, Elsevier, vol. 206(C).
    11. Martins, André C.R., 2007. "Non-stationary correlation matrices and noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 552-558.
    12. Rosenow, Bernd, 2008. "Determining the optimal dimensionality of multivariate volatility models with tools from random matrix theory," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 279-302, January.
    13. Andreas Muhlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Papers 1803.00261, arXiv.org.
    14. Fabio Vanni & Asmerilda Hitaj & Elisa Mastrogiacomo, 2024. "Enhancing Portfolio Allocation: A Random Matrix Theory Perspective," Mathematics, MDPI, vol. 12(9), pages 1-16, May.
    15. Diane Wilcox & Tim Gebbie, 2004. "An analysis of Cross-correlations in South African Market data," Papers cond-mat/0402389, arXiv.org, revised Sep 2006.
    16. Andreas Mühlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Risks, MDPI, vol. 6(2), pages 1-25, April.
    17. Marwane El Alaoui & Elie Bouri & Nehme Azoury, 2020. "The Determinants of the U.S. Consumer Sentiment: Linear and Nonlinear Models," IJFS, MDPI, vol. 8(3), pages 1-13, July.
    18. Varga-Haszonits, I. & Kondor, I., 2007. "Noise sensitivity of portfolio selection in constant conditional correlation GARCH models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 307-318.
    19. Bohdan Yu. Kyshakevych & Anatoliy K. Prykarpatsky & Denis Blackmore & Ivan P. Tverdokhlib, 2010. "Statistically Optimal Strategy Analysis of a Competing Portfolio Market with a Polyvariant Profit Function," Papers 1005.2661, arXiv.org.
    20. Jerome Garnier-Brun & Michael Benzaquen & Stefano Ciliberti & Jean-Philippe Bouchaud, 2021. "A new spin on optimal portfolios and ecological equilibria," Post-Print hal-03378915, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1205.0877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.