IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v15y2015i11p1851-1864.html
   My bibliography  Save this article

Modelling exchange rate returns: which flexible distribution to use?

Author

Listed:
  • Canan G. Corlu
  • Alper Corlu

Abstract

It is well known that the normal distribution is inadequate in capturing the skewed and heavy-tailed behaviour of exchange rate returns. To this end, various flexible distributions that are capable of modelling the asymmetric and tailed behaviour of returns have been proposed. In this paper, we investigate the performance of the generalized lambda distribution (GLD) to capture the skewed and leptokurtic behaviour of exchange rate returns. We do this by conducting a comprehensive numerical study to compare the performance of the GLD against the performances of the skewed t distribution, the unbounded Johnson family of distributions and the normal inverse Gaussian (NIG) distribution. Our results suggest that in terms of the value-at-risk and expected shortfall, the GLD shows at least similar performance to the skewed t distribution and the NIG distribution. Considering the ease in GLD's use for random variate generation in Monte Carlo simulations, we conclude that the GLD can be a good alternative in various financial applications where modelling of the heavy tail behaviour is critical.

Suggested Citation

  • Canan G. Corlu & Alper Corlu, 2015. "Modelling exchange rate returns: which flexible distribution to use?," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1851-1864, November.
  • Handle: RePEc:taf:quantf:v:15:y:2015:i:11:p:1851-1864
    DOI: 10.1080/14697688.2014.942231
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2014.942231
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2014.942231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    2. McFarland, James W & Pettit, R Richardson & Sung, Sam K, 1982. "The Distribution of Foreign Exchange Price Changes: Trading Day Effects and Risk Measurement," Journal of Finance, American Finance Association, vol. 37(3), pages 693-715, June.
    3. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    4. Choi, Pilsun & Nam, Kiseok, 2008. "Asymmetric and leptokurtic distribution for heteroscedastic asset returns: The SU-normal distribution," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 41-63, January.
    5. Su, Steve, 2007. "Numerical maximum log likelihood estimation for generalized lambda distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3983-3998, May.
    6. Boothe, Paul & Glassman, Debra, 1987. "The statistical distribution of exchange rates: Empirical evidence and economic implications," Journal of International Economics, Elsevier, vol. 22(3-4), pages 297-319, May.
    7. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    8. M. C. Jones & M. J. Faddy, 2003. "A skew extension of the t‐distribution, with applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 159-174, February.
    9. Bauwens, Luc & Laurent, Sebastien, 2005. "A New Class of Multivariate Skew Densities, With Application to Generalized Autoregressive Conditional Heteroscedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 346-354, July.
    10. Akgiray, Vedat & Booth, G Geoffrey, 1988. "Mixed Diffusion-Jump Process Modeling of Exchange Rate Movements," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 631-637, November.
    11. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    12. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    13. Mandelbrot, Benoit B, 1972. "Correction of an Error in "The Variation of Certain Speculative Prices" (1963)," The Journal of Business, University of Chicago Press, vol. 45(4), pages 542-543, October.
    14. Charles J. Corrado, 2001. "Option pricing based on the generalized lambda distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(3), pages 213-236, March.
    15. Tucker, Alan L & Pond, Lallon, 1988. "The Probability Distribution of Foreign Exchange Price Changes: Tests of Candidate Processes," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 638-647, November.
    16. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    17. Westerfield, Janice Moulton, 1977. "An examination of foreign exchange risk under fixed and floating rate regimes," Journal of International Economics, Elsevier, vol. 7(2), pages 181-200, May.
    18. Fournier, B. & Rupin, N. & Bigerelle, M. & Najjar, D. & Iost, A. & Wilcox, R., 2007. "Estimating the parameters of a generalized lambda distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2813-2835, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanuel Afuecheta & Idika E. Okorie & Saralees Nadarajah & Geraldine E. Nzeribe, 2024. "Forecasting Value at Risk and Expected Shortfall of Foreign Exchange Rate Volatility of Major African Currencies via GARCH and Dynamic Conditional Correlation Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 271-304, January.
    2. Jaehyuk Choi & Chenru Liu & Byoung Ki Seo, 2019. "Hyperbolic normal stochastic volatility model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 186-204, February.
    3. Basnarkov, Lasko & Stojkoski, Viktor & Utkovski, Zoran & Kocarev, Ljupco, 2019. "Correlation patterns in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1026-1037.
    4. da Cunha, C.R. & da Silva, R., 2020. "Relevant stylized facts about bitcoin: Fluctuations, first return probability, and natural phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    5. Stephen Chan & Jeffrey Chu & Saralees Nadarajah & Joerg Osterrieder, 2017. "A Statistical Analysis of Cryptocurrencies," JRFM, MDPI, vol. 10(2), pages 1-23, May.
    6. Van Cauwenberge Annelies & Vancauteren Mark & Braekers Roel & Vandemaele Sigrid, 2022. "The degree of international trade and exchange rate exposure—Firm‐level evidence from two small open economies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 3832-3850, October.
    7. Till Massing, 2019. "What is the best Lévy model for stock indices? A comparative study with a view to time consistency," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(3), pages 277-344, September.
    8. Christos Floros & Konstantinos Gkillas & Christos Kountzakis, 2022. "Generalized Johnson Distributions and Risk Functionals," Mathematics, MDPI, vol. 10(17), pages 1-12, September.
    9. Lyócsa, Štefan & Plíhal, Tomáš & Výrost, Tomáš, 2024. "Forecasting day-ahead expected shortfall on the EUR/USD exchange rate: The (I)relevance of implied volatility," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1275-1301.
    10. Massing, Till & Ramos, Arturo, 2021. "Student’s t mixture models for stock indices. A comparative study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    11. Jeffrey Chu & Saralees Nadarajah & Stephen Chan, 2015. "Statistical Analysis of the Exchange Rate of Bitcoin," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
    12. Ayman Alzaatreh & Hana Sulieman, 2021. "On fitting cryptocurrency log-return exchange rates," Empirical Economics, Springer, vol. 60(3), pages 1157-1174, March.
    13. Yuzhi Cai, 2021. "Estimating expected shortfall using a quantile function model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4332-4360, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allen, David & Lizieri, Colin & Satchell, Stephen, 2020. "A comparison of non-Gaussian VaR estimation and portfolio construction techniques," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 356-368.
    2. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    3. Vijverberg, Chu-Ping C. & Vijverberg, Wim P.M. & Taşpınar, Süleyman, 2016. "Linking Tukey’s legacy to financial risk measurement," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 595-615.
    4. Diks, Cees & Fang, Hao, 2020. "Comparing density forecasts in a risk management context," International Journal of Forecasting, Elsevier, vol. 36(2), pages 531-551.
    5. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2014. "Semi-nonparametric VaR forecasts for hedge funds during the recent crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 330-343.
    6. Lesedi Mabitsela & Eben Maré & Rodwell Kufakunesu, 2015. "Quantification of VaR: A Note on VaR Valuation in the South African Equity Market," JRFM, MDPI, vol. 8(1), pages 1-24, February.
    7. McCurdy, Thomas H & Morgan, Ieuan G, 1988. "Testing the Martingale Hypothesis in Deutsche Mark Futures with Models Specifying the Form of Heteroscedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(3), pages 187-202, July-Sept.
    8. Gurjeet Dhesi & Bilal Shakeel & Marcel Ausloos, 2021. "Modelling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach," Annals of Operations Research, Springer, vol. 299(1), pages 1397-1410, April.
    9. Osler, Carol L., 2005. "Stop-loss orders and price cascades in currency markets," Journal of International Money and Finance, Elsevier, vol. 24(2), pages 219-241, March.
    10. Christian Walter, 2001. "Searching for scaling laws in distributional properties of price variations: a review over 40 years," Post-Print hal-04567942, HAL.
    11. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    12. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    13. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Leibniz Centre for European Economic Research.
    14. Tsionas, Efthymios G., 1998. "Monte Carlo inference in econometric models with symmetric stable disturbances," Journal of Econometrics, Elsevier, vol. 88(2), pages 365-401, November.
    15. Abdou Kâ Diongue & Dominique Guegan & Rodney C. Wolff, 2008. "Exact Maximum Likelihood estimation for the BL-GARCH model under elliptical distributed innovations," Post-Print halshs-00270719, HAL.
    16. Ryo Kinoshita, 2015. "Asset allocation under higher moments with the GARCH filter," Empirical Economics, Springer, vol. 49(1), pages 235-254, August.
    17. Reza Siregar & Victor Pontines, 2004. "Successful and Unsuccessful Attacks: Evaluating the Stability of the East Asian Currencies," Centre for International Economic Studies Working Papers 2004-04, University of Adelaide, Centre for International Economic Studies.
    18. de Vries, Casper G., 1991. "On the relation between GARCH and stable processes," Journal of Econometrics, Elsevier, vol. 48(3), pages 313-324, June.
    19. Gürtler, Marc & Rauh, Ronald, 2012. "Challenging traditional risk models by a non-stationary approach with nonparametric heteroscedasticity," Working Papers IF41V1, Technische Universität Braunschweig, Institute of Finance.
    20. Ole E. Barndorff-Nielsen & Neil Shephard, 2012. "Basics of Levy processes," Economics Papers 2012-W06, Economics Group, Nuffield College, University of Oxford.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:15:y:2015:i:11:p:1851-1864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.