IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v31y2013i3p358-369.html
   My bibliography  Save this article

A Robust Test for Weak Instruments

Author

Listed:
  • José Luis Montiel Olea
  • Carolin Pflueger

Abstract

We develop a test for weak instruments in linear instrumental variables regression that is robust to heteroscedasticity, autocorrelation, and clustering. Our test statistic is a scaled nonrobust first-stage F statistic. Instruments are considered weak when the two-stage least squares or the limited information maximum likelihood Nagar bias is large relative to a benchmark. We apply our procedures to the estimation of the elasticity of intertemporal substitution, where our test cannot reject the null of weak instruments in a larger number of countries than the test proposed by Stock and Yogo in 2005. Supplementary materials for this article are available online.

Suggested Citation

  • José Luis Montiel Olea & Carolin Pflueger, 2013. "A Robust Test for Weak Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 358-369, July.
  • Handle: RePEc:taf:jnlbes:v:31:y:2013:i:3:p:358-369
    DOI: 10.1080/00401706.2013.806694
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00401706.2013.806694
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00401706.2013.806694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruud, Paul A., 2000. "An Introduction to Classical Econometric Theory," OUP Catalogue, Oxford University Press, number 9780195111644, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John M. Abowd & Francis Kramarz & Sébastien Pérez-Duarte & Ian M. Schmutte, 2018. "Sorting Between and Within Industries: A Testable Model of Assortative Matching," Annals of Economics and Statistics, GENES, issue 129, pages 1-32.
    2. Hugo Benítez-Silva & Debra Dwyer & Wayne-Roy Gayle & Thomas Muench, 2008. "Expectations in micro data: rationality revisited," Empirical Economics, Springer, vol. 34(2), pages 381-416, March.
    3. Antonio Ciccone & Giovanni Peri, 2005. "Long-Run Substitutability Between More and Less Educated Workers: Evidence from U.S. States, 1950-1990," The Review of Economics and Statistics, MIT Press, vol. 87(4), pages 652-663, November.
    4. Gianmarco I.P. Ottaviano & Giovanni Peri, 2005. "Rethinking the Gains from Immigration: Theory and Evidence from the U.S," NBER Working Papers 11672, National Bureau of Economic Research, Inc.
    5. Benitez-Silva, Hugo & Dwyer, Debra S., 2006. "Expectation formation of older married couples and the rational expectations hypothesis," Labour Economics, Elsevier, vol. 13(2), pages 191-218, April.
    6. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2020. "Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory," Journal of Econometrics, Elsevier, vol. 218(2), pages 390-418.
    7. Woutersen, Tiemen & Hausman, Jerry A., 2019. "Increasing the power of specification tests," Journal of Econometrics, Elsevier, vol. 211(1), pages 166-175.
    8. Hugo Benítez-Silva & Debra S. Dwyer, 2003. "What to Expect when you are Expecting Rationality: Testing Rational Expectations using Micro Data," Working Papers wp037, University of Michigan, Michigan Retirement Research Center.
    9. repec:tiu:tiucen:200457 is not listed on IDEAS
    10. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    11. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE.
    12. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
    13. Aradillas-López, Andrés & Rosen, Adam M., 2022. "Inference in ordered response games with complete information," Journal of Econometrics, Elsevier, vol. 226(2), pages 451-476.
    14. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    15. Herrera Gómez, Marcos & Cid, Juan Carlos & Paz, Jorge Augusto, 2012. "Introducción a la econometría espacial: Una aplicación al estudio de la fecundidad en la Argentina usando R [Introduction to Spatial Econometrics: An application to the study of fertility in Argent," MPRA Paper 41138, University Library of Munich, Germany.
    16. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    17. Mark Agee & Scott Atkinson & Thomas Crocker, 2012. "Child maturation, time-invariant, and time-varying inputs: their interaction in the production of child human capital," Journal of Productivity Analysis, Springer, vol. 38(1), pages 29-44, August.
    18. Sotiris Karkalakos & Christos Kotsogiannis, 2007. "A spatial analysis of provincial corporate income tax responses: evidence from Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(3), pages 782-811, August.
    19. Lin, Xu & Lee, Lung-fei, 2010. "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Elsevier, vol. 157(1), pages 34-52, July.
    20. Hlouskova, Jaroslava & Sögner, Leopold, 2020. "GMM estimation of affine term structure models," Econometrics and Statistics, Elsevier, vol. 13(C), pages 2-15.
    21. Fiorentini, Gabriele & Sentana, Enrique, 2021. "New testing approaches for mean–variance predictability," Journal of Econometrics, Elsevier, vol. 222(1), pages 516-538.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:31:y:2013:i:3:p:358-369. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.tandfonline.com/UBES20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.