IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v30y2012i4p576-591.html
   My bibliography  Save this article

A Stochastic Volatility Model With Conditional Skewness

Author

Listed:
  • Bruno Feunou
  • Roméo Tédongap

Abstract

We develop a discrete-time affine stochastic volatility model with time-varying conditional skewness (SVS). Importantly, we disentangle the dynamics of conditional volatility and conditional skewness in a coherent way. Our approach allows current asset returns to be asymmetric conditional on current factors and past information, which we term contemporaneous asymmetry. Conditional skewness is an explicit combination of the conditional leverage effect and contemporaneous asymmetry. We derive analytical formulas for various return moments that are used for generalized method of moments (GMM) estimation. Applying our approach to S&P500 index daily returns and option data, we show that one- and two-factor SVS models provide a better fit for both the historical and the risk-neutral distribution of returns, compared to existing affine generalized autoregressive conditional heteroscedasticity (GARCH), and stochastic volatility with jumps (SVJ) models. Our results are not due to an overparameterization of the model: the one-factor SVS models have the same number of parameters as their one-factor GARCH competitors and less than the SVJ benchmark.

Suggested Citation

  • Bruno Feunou & Roméo Tédongap, 2012. "A Stochastic Volatility Model With Conditional Skewness," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 576-591, July.
  • Handle: RePEc:taf:jnlbes:v:30:y:2012:i:4:p:576-591
    DOI: 10.1080/07350015.2012.715958
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2012.715958
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    2. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    3. Jiang, George J & Knight, John L, 2002. "Estimation of Continuous-Time Processes via the Empirical Characteristic Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 198-212, April.
    4. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    5. Morten B. Jensen & Asger Lunde, 2001. "The NIG-S&ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroskedastic volatility model," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-10.
    6. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    7. Serge Darolles & Christian Gourieroux & Joann Jasiak, 2006. "Structural Laplace Transform and Compound Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(4), pages 477-503, July.
    8. Joann Jasiak & Christian Gourieroux, 2006. "Autoregressive gamma processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 129-152.
    9. Bruno Feunou & Mohammad R. Jahan-Parvar & Roméo Tédongap, 2013. "Modeling Market Downside Volatility," Review of Finance, European Finance Association, vol. 17(1), pages 443-481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Grith & Wolfgang K. Härdle & Alois Kneip & Heiko Wagner, 2016. "Functional Principal Component Analysis for Derivatives of Multivariate Curves," SFB 649 Discussion Papers SFB649DP2016-033, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Martin Iseringhausen, 2018. "The Time-Varying Asymmetry Of Exchange Rate Returns: A Stochastic Volatility – Stochastic Skewness Model," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 18/944, Ghent University, Faculty of Economics and Business Administration.
    3. Bruno Feunou & Cédric Okou, 2017. "Risk-Neutral Moment-Based Estimation of Affine Option Pricing Models," Staff Working Papers 17-55, Bank of Canada.
    4. Junni L. Zhang & Wolfgang K. Härdle & Cathy Y. Chen & Elisabeth Bommes, 2015. "Distillation of News Flow into Analysis of Stock Reactions," SFB 649 Discussion Papers SFB649DP2015-005, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. repec:spr:alstar:v:101:y:2017:i:3:d:10.1007_s10182-017-0288-1 is not listed on IDEAS
    6. Lin, Chu-Hsiung & Changchien, Chang-Cheng & Kao, Tzu-Chuan & Kao, Wei-Shun, 2014. "High-order moments and extreme value approach for value-at-risk," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 421-434.
    7. Mukhoti, Sujay, 2014. "Non-Stationary Stochastic Volatility Model for Dynamic Feedback and Skewness," MPRA Paper 62532, University Library of Munich, Germany.
    8. Cheng, Ai-Ru & Jahan-Parvar, Mohammad R., 2014. "Risk–return trade-off in the pacific basin equity markets," Emerging Markets Review, Elsevier, vol. 18(C), pages 123-140.
    9. Sujay K Mukhoti, "undated". "Dynamic Feedback Effect And Skewness In Non-Stationary Stochastic Volatility Model With Leverage," Working papers 145, Indian Institute of Management Kozhikode.
    10. Javed Farrukh & Podgórski Krzysztof, 2014. "Leverage Effect for Volatility with Generalized Laplace Error," Stochastics and Quality Control, De Gruyter, vol. 29(2), pages 157-166, December.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • G1 - Financial Economics - - General Financial Markets
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:30:y:2012:i:4:p:576-591. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/UBES20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.