IDEAS home Printed from https://ideas.repec.org/p/bca/bocawp/23-40.html
   My bibliography  Save this paper

Generalized Autoregressive Gamma Processes

Author

Listed:
  • Bruno Feunou

Abstract

We introduce generalized autoregressive gamma (GARG) processes, a class of autoregressive and moving-average processes that extends the class of existing autoregressive gamma (ARG) processes in one important dimension: each conditional moment dynamic is driven by a different and identifiable moving average of the variable of interest. The paper provides ergodicity conditions for GARG processes and derives closed-form conditional and unconditional moments. The paper also presents estimation and inference methods, illustrated by an application to European option pricing where the daily realized variance follows a GARG dynamic. Our results show that using GARG processes reduces pricing errors by substantially more than using ARG processes does.

Suggested Citation

  • Bruno Feunou, 2023. "Generalized Autoregressive Gamma Processes," Staff Working Papers 23-40, Bank of Canada.
  • Handle: RePEc:bca:bocawp:23-40
    DOI: 10.34989/swp-2023-40
    as

    Download full text from publisher

    File URL: https://doi.org/10.34989/swp-2023-40
    File Function: Abstract
    Download Restriction: no

    File URL: https://www.bankofcanada.ca/wp-content/uploads/2023/08/swp2023-40.pdf
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/10.34989/swp-2023-40?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bruno Feunou & Roméo Tédongap, 2012. "A Stochastic Volatility Model With Conditional Skewness," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 576-591, July.
    2. Bollerslev, Tim & Zhou, Hao, 2004. "Corrigendum to "Estimating stochastic volatility diffusion using conditional moments of integrated volatility" [J. Econom. 109 (2002) 33-65]," Journal of Econometrics, Elsevier, vol. 119(1), pages 221-222, March.
    3. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    4. Knight, John L. & Yu, Jun, 2002. "Empirical Characteristic Function In Time Series Estimation," Econometric Theory, Cambridge University Press, vol. 18(3), pages 691-721, June.
    5. Marine Carrasco & Jean-Pierre Florens, 2000. "Efficient GMM Estimation Using the Empirical Characteristic Function," Working Papers 2000-33, Center for Research in Economics and Statistics.
    6. David S. Bates, 2006. "Maximum Likelihood Estimation of Latent Affine Processes," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 909-965.
    7. Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
    8. Carrasco, Marine & Chernov, Mikhail & Florens, Jean-Pierre & Ghysels, Eric, 2007. "Efficient estimation of general dynamic models with a continuum of moment conditions," Journal of Econometrics, Elsevier, vol. 140(2), pages 529-573, October.
    9. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    10. Anh Le & Kenneth J. Singleton & Qiang Dai, 2010. "Discrete-Time Affine-super-ℚ Term Structure Models with Generalized Market Prices of Risk," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2184-2227.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    2. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    3. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    4. Ghanbari, Hamed, 2024. "Persistent and transient variance components in option pricing models with variance-dependent Kernel," Journal of Empirical Finance, Elsevier, vol. 79(C).
    5. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    6. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    7. Kotchoni, Rachidi, 2012. "Applications of the characteristic function-based continuum GMM in finance," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3599-3622.
    8. Creel, Michael & Kristensen, Dennis, 2015. "ABC of SV: Limited information likelihood inference in stochastic volatility jump-diffusion models," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 85-108.
    9. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    10. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    11. Xinglin Yang & Peng Wang, 2018. "VIX futures pricing with conditional skewness," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1126-1151, September.
    12. Ornthanalai, Chayawat, 2014. "Lévy jump risk: Evidence from options and returns," Journal of Financial Economics, Elsevier, vol. 112(1), pages 69-90.
    13. Robert Azencott & Peng Ren & Ilya Timofeyev, 2020. "Realised volatility and parametric estimation of Heston SDEs," Finance and Stochastics, Springer, vol. 24(3), pages 723-755, July.
    14. Hongkai Cao & Alexandru Badescu & Zhenyu Cui & Sarath Kumar Jayaraman, 2020. "Valuation of VIX and target volatility options with affine GARCH models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(12), pages 1880-1917, December.
    15. esposito, francesco paolo & cummins, mark, 2015. "Filtering and likelihood estimation of latent factor jump-diffusions with an application to stochastic volatility models," MPRA Paper 64987, University Library of Munich, Germany.
    16. Han, Hyojin & Khrapov, Stanislav & Renault, Eric, 2020. "The leverage effect puzzle revisited: Identification in discrete time," Journal of Econometrics, Elsevier, vol. 217(2), pages 230-258.
    17. Papantonis, Ioannis, 2016. "Volatility risk premium implications of GARCH option pricing models," Economic Modelling, Elsevier, vol. 58(C), pages 104-115.
    18. Kyungsub Lee, 2013. "Probabilistic and statistical properties of moment variations and their use in inference and estimation based on high frequency return data," Papers 1311.5036, arXiv.org, revised Jul 2015.
    19. Fang Liang & Lingshan Du, 2024. "Option pricing with dynamic conditional skewness," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1154-1188, July.
    20. Woerner Jeannette H. C., 2003. "Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 47-68, January.

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:23-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bocgvca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.