IDEAS home Printed from
   My bibliography  Save this article

Addressing the problem of missing data in decision tree modeling


  • Saiedeh Haji-Maghsoudi
  • Azam Rastegari
  • Behshid Garrusi
  • Mohammad Reza Baneshi


Tree-based models (TBMs) can substitute missing data using the surrogate approach (SUR). The aim of this study is to compare the performance of statistical imputation against the performance of SUR in TBMs. Employing empirical data, a TBM was constructed. Thereafter, 10%, 20%, and 40% of variable values appeared as the first split was deleted, and imputed with and without the use of outcome variables in the imputation model (IMP− and IMP+). This was repeated one thousand times. Absolute relative bias above 0.10 was defined as sever (SARB). Subsequently, in a series of simulations, the following parameters were changed: the degree of correlation among variables, the number of variables truly associated with the outcome, and the missing rate. At a 10% missing rate, the proportion of times SARB was observed in either SUR or IMP− was two times higher than in IMP+ (28% versus 13%). When the missing rate was increased to 20%, all these proportions were approximately doubled. Irrespective of the missing rate, IMP+ was about 65% less likely to produce SARB than SUR. Results of IMP− and SUR were comparable up to a 20% missing rate. At a high missing rate, IMP− was 76% more likely to provide SARB estimates. Statistical imputation of missing data and the use of outcome variable in the imputation model is recommended, even in the content of TBM.

Suggested Citation

  • Saiedeh Haji-Maghsoudi & Azam Rastegari & Behshid Garrusi & Mohammad Reza Baneshi, 2018. "Addressing the problem of missing data in decision tree modeling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(3), pages 547-557, February.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:3:p:547-557
    DOI: 10.1080/02664763.2017.1284184

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    2. Hapfelmeier, A. & Hothorn, T. & Ulm, K., 2012. "Recursive partitioning on incomplete data using surrogate decisions and multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1552-1565.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:3:p:547-557. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.