IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Autoregressive model selection based on a prediction perspective

Listed author(s):
  • Yun-Huan Lee
  • Chun-Shu Chen
Registered author(s):

    The autoregressive (AR) model is a popular method for fitting and prediction in analyzing time-dependent data, where selecting an accurate model among considered orders is a crucial issue. Two commonly used selection criteria are the Akaike information criterion and the Bayesian information criterion. However, the two criteria are known to suffer potential problems regarding overfit and underfit, respectively. Therefore, using them would perform well in some situations, but poorly in others. In this paper, we propose a new criterion in terms of the prediction perspective based on the concept of generalized degrees of freedom for AR model selection. We derive an approximately unbiased estimator of mean-squared prediction errors based on a data perturbation technique for selecting the order parameter, where the estimation uncertainty involved in a modeling procedure is considered. Some numerical experiments are performed to illustrate the superiority of the proposed method over some commonly used order selection criteria. Finally, the methodology is applied to a real data example to predict the weekly rate of return on the stock price of Taiwan Semiconductor Manufacturing Company and the results indicate that the proposed method is satisfactory.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of Applied Statistics.

    Volume (Year): 39 (2012)
    Issue (Month): 4 (October)
    Pages: 913-922

    in new window

    Handle: RePEc:taf:japsta:v:39:y:2012:i:4:p:913-922
    DOI: 10.1080/02664763.2011.636418
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:4:p:913-922. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.