IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v23y2011i4p1003-1029.html
   My bibliography  Save this article

Deconvolution for an atomic distribution: rates of convergence

Author

Listed:
  • Shota Gugushvili
  • Bert van Es
  • Peter Spreij

Abstract

Let X1, …, Xn be i.i.d. copies of a random variable X=Y+Z, where Xi=Yi+Zi, and Yi and Zi are independent and have the same distribution as Y and Z, respectively. Assume that the random variables Yi’s are unobservable and that Y=AV, where A and V are independent, A has a Bernoulli distribution with probability of success equal to 1−p and V has a distribution function F with density f. Let the random variable Z have a known distribution with density k. Based on a sample X1, …, Xn, we consider the problem of nonparametric estimation of the density f and the probability p. Our estimators of f and p are constructed via Fourier inversion and kernel smoothing. We derive their convergence rates over suitable functional classes. By establishing in a number of cases the lower bounds for estimation of f and p we show that our estimators are rate-optimal in these cases.

Suggested Citation

  • Shota Gugushvili & Bert van Es & Peter Spreij, 2011. "Deconvolution for an atomic distribution: rates of convergence," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 1003-1029.
  • Handle: RePEc:taf:gnstxx:v:23:y:2011:i:4:p:1003-1029
    DOI: 10.1080/10485252.2011.576763
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2011.576763
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2011.576763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mihee Lee & Haipeng Shen & Christina Burch & J. Marron, 2010. "Direct deconvolution density estimation of a mixture distribution motivated by mutation effects distribution," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(1), pages 1-22.
    2. Ingrid K. Glad & Nils Lid Hjort & Nikolai G. Ushakov, 2003. "Correction of Density Estimators that are not Densities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 415-427, June.
    3. Chen, Song X. & Delaigle, Aurore & Hall, Peter, 2010. "Nonparametric estimation for a class of Lévy processes," Journal of Econometrics, Elsevier, vol. 157(2), pages 257-271, August.
    4. Delaigle, Aurore & Hall, Peter, 2006. "On optimal kernel choice for deconvolution," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1594-1602, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costa, Manon & Gadat, Sébastien & Gonnord, Pauline & Risser, Laurent, 2018. "Cytometry inference through adaptive atomic deconvolution," TSE Working Papers 18-905, Toulouse School of Economics (TSE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
    2. Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
    3. Olivier Thas, 2009. "Comments on: Goodness-of-fit tests in mixed modes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 260-264, August.
    4. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    5. Buch-Kromann, Tine & Guillén, Montserrat & Linton, Oliver & Nielsen, Jens Perch, 2011. "Multivariate density estimation using dimension reducing information and tail flattening transformations," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 99-110, January.
    6. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    7. Gong, Xiaodong & Gao, Jiti, 2015. "Nonparametric Kernel Estimation of the Impact of Tax Policy on the Demand for Private Health Insurance in Australia," IZA Discussion Papers 9265, Institute of Labor Economics (IZA).
    8. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    9. Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
    10. Langrené, Nicolas & Warin, Xavier, 2021. "Fast multivariate empirical cumulative distribution function with connection to kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    11. Irene Botosaru, 2017. "Identifying Distributions in a Panel Model with Heteroskedasticity: An Application to Earnings Volatility," Discussion Papers dp17-11, Department of Economics, Simon Fraser University.
    12. Adusumilli, Karun & Kurisu, Daisuke & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," Journal of Econometrics, Elsevier, vol. 215(1), pages 131-164.
    13. Kato, Kengo & Kurisu, Daisuke, 2020. "Bootstrap confidence bands for spectral estimation of Lévy densities under high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1159-1205.
    14. Marco Marzio & Stefania Fensore & Agnese Panzera & Charles C. Taylor, 2018. "Circular local likelihood," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 921-945, December.
    15. Cao Xuan Phuong & Le Thi Hong Thuy & Vo Nguyen Tuyet Doan, 2022. "Nonparametric estimation of cumulative distribution function from noisy data in the presence of Berkson and classical errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 289-322, April.
    16. Jeon, Jeong Min & Van Keilegom, Ingrid, 2023. "Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    17. Sayed A. Mostafa & Ibrahim A. Ahmad, 2019. "Kernel density estimation from complex surveys in the presence of complete auxiliary information," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(3), pages 295-338, April.
    18. Adusumilli, Karun & Kurisu, Daisies & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," LSE Research Online Documents on Economics 102692, London School of Economics and Political Science, LSE Library.
    19. Fabienne Comte & Céline Duval & Valentine Genon-Catalot, 2014. "Nonparametric density estimation in compound Poisson processes using convolution power estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(1), pages 163-183, January.
    20. Costa, Manon & Gadat, Sébastien & Gonnord, Pauline & Risser, Laurent, 2018. "Cytometry inference through adaptive atomic deconvolution," TSE Working Papers 18-905, Toulouse School of Economics (TSE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:23:y:2011:i:4:p:1003-1029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.