IDEAS home Printed from
   My bibliography  Save this article

Correction of Density Estimators that are not Densities


  • Ingrid K. Glad


Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods that turn any density estimator into one which is a bona fide density, and which is always better in performance under one set of conditions and arbitrarily close in performance under a complementary set of conditions. This improvement-for-free procedure can, in particular, be applied for higher-order kernel estimators, classes of modern "h"-super-4 bias kernel type estimators, superkernel estimators, the sinc kernel estimator, the "k"-NN estimator, orthogonal expansion estimators, and for various recently developed semi-parametric density estimators. Copyright Board of the Foundation of the Scandinavian Journal of Statistics 2003..

Suggested Citation

  • Ingrid K. Glad, 2003. "Correction of Density Estimators that are not Densities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 415-427.
  • Handle: RePEc:bla:scjsta:v:30:y:2003:i:2:p:415-427

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Olivier Thas, 2009. "Comments on: Goodness-of-fit tests in mixed modes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 260-264, August.
    2. Chacón, José E. & Monfort, Pablo & Tenreiro, Carlos, 2014. "Fourier methods for smooth distribution function estimation," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 223-230.
    3. Buch-Kromann, Tine & Guillén, Montserrat & Linton, Oliver & Nielsen, Jens Perch, 2011. "Multivariate density estimation using dimension reducing information and tail flattening transformations," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 99-110, January.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:30:y:2003:i:2:p:415-427. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.