IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v17y2011i3p169-196.html
   My bibliography  Save this article

Monte Carlo methods for pricing discrete Parisian options

Author

Listed:
  • Carole Bernard
  • Phelim Boyle

Abstract

The paper develops an efficient Monte Carlo method to price discretely monitored Parisian options based on a control variate approach. The paper also modifies the Parisian option design by assuming the option is exercised when the barrier condition is met rather than at maturity. We obtain formulas for this new design when the underlying is continuously monitored and develop an efficient Monte Carlo method for the discrete case. Our method can also be used for the case of multiple barriers. We use numerical examples to illustrate the approach and reveal important features of the different types of options considered. Some performance-based executive stock options include different tranches of discretely monitored Parisian options and we illustrate this with a practical example.

Suggested Citation

  • Carole Bernard & Phelim Boyle, 2011. "Monte Carlo methods for pricing discrete Parisian options," The European Journal of Finance, Taylor & Francis Journals, vol. 17(3), pages 169-196.
  • Handle: RePEc:taf:eurjfi:v:17:y:2011:i:3:p:169-196
    DOI: 10.1080/13518470903448473
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13518470903448473
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13518470903448473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Zvan, R. & Vetzal, K. R. & Forsyth, P. A., 2000. "PDE methods for pricing barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1563-1590, October.
    3. Marc Chesney & Laurent Gauthier, 2006. "American Parisian options," Finance and Stochastics, Springer, vol. 10(4), pages 475-506, December.
    4. Neil Brisley, 2006. "Executive Stock Options: Early Exercise Provisions and Risk‐taking Incentives," Journal of Finance, American Finance Association, vol. 61(5), pages 2487-2509, October.
    5. Pascal Francois, 2004. "Capital Structure and Asset Prices: Some Effects of Bankruptcy Procedures," The Journal of Business, University of Chicago Press, vol. 77(2), pages 387-412, April.
    6. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-1250.
    7. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    8. Jin-Chuan Duan & Evan Dudley & Geneviève Gauthier & Jean-Guy Simonato, 1999. "Pricing Discretely Monitored Barrier Options by a Markov Chain," CIRANO Working Papers 99s-15, CIRANO.
    9. Peter Carr & Vadim Linetsky, 2000. "The Valuation of Executive Stock Options in an Intensity-Based Framework," Review of Finance, European Finance Association, vol. 4(3), pages 211-230.
    10. J. H. M. Anderluh, 2008. "Pricing Parisians and barriers by hitting time simulation," The European Journal of Finance, Taylor & Francis Journals, vol. 14(2), pages 137-156.
    11. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349, October.
    12. Phelim Boyle & Yisong Tian, 1998. "An explicit finite difference approach to the pricing of barrier options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(1), pages 17-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carole Bernard & Olivier Le Courtois, 2012. "Performance Regularity: A New Class of Executive Compensation Packages," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 19(4), pages 353-370, November.
    2. Dassios, Angelos & Lim, Jia Wei, 2017. "An analytical solution for the two-sided Parisian stopping time, its asymptotics and the pricing of Parisian options," LSE Research Online Documents on Economics 60154, London School of Economics and Political Science, LSE Library.
    3. Angelos Dassios & Jia Wei Lim, 2018. "An Efficient Algorithm for Simulating the Drawdown Stopping Time and the Running Maximum of a Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 189-204, March.
    4. Yangyang Zhuang & Pan Tang, 2023. "Pricing of American Parisian option as executive option based on the least‐squares Monte Carlo approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1469-1496, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fusai, Gianluca & Recchioni, Maria Cristina, 2007. "Analysis of quadrature methods for pricing discrete barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 826-860, March.
    2. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    3. Rahman Farnoosh & Hamidreza Rezazadeh & Amirhossein Sobhani & M. Hossein Beheshti, 2016. "A Numerical Method for Discrete Single Barrier Option Pricing with Time-Dependent Parameters," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 131-145, June.
    4. Lian, Guanghua & Zhu, Song-Ping & Elliott, Robert J. & Cui, Zhenyu, 2017. "Semi-analytical valuation for discrete barrier options under time-dependent Lévy processes," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 167-183.
    5. Vidal Nunes, João Pedro & Ruas, João Pedro & Dias, José Carlos, 2015. "Pricing and static hedging of American-style knock-in options on defaultable stocks," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 343-360.
    6. Emmanuel Gobet, 2009. "Advanced Monte Carlo methods for barrier and related exotic options," Post-Print hal-00319947, HAL.
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. Allegretto, Walter & Lin, Yanping & Yang, Hongtao, 2002. "A novel approach to the valuation of American options," Global Finance Journal, Elsevier, vol. 13(1), pages 17-28.
    9. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.
    10. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    11. A. Golbabai & L. Ballestra & D. Ahmadian, 2014. "A Highly Accurate Finite Element Method to Price Discrete Double Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 153-173, August.
    12. Marianito R. Rodrigo, 2020. "Pricing of Barrier Options on Underlying Assets with Jump-Diffusion Dynamics: A Mellin Transform Approach," Mathematics, MDPI, vol. 8(8), pages 1-20, August.
    13. Feng, Yun & Huang, Bing-hua & Young, Martin & Zhou, Qi-yuan, 2015. "Decomposing and valuing convertible bonds: A new method based on exotic options," Economic Modelling, Elsevier, vol. 47(C), pages 193-206.
    14. Zvan, R. & Vetzal, K. R. & Forsyth, P. A., 2000. "PDE methods for pricing barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1563-1590, October.
    15. Simona Sanfelici, 2004. "Galerkin infinite element approximation for pricing barrier options and options with discontinuous payoff," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 27(2), pages 125-151, December.
    16. Deng, Jie & Qin, Zhongfeng, 2021. "On Parisian option pricing for uncertain currency model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    17. Keegan Mendonca & Vasileios E. Kontosakos & Athanasios A. Pantelous & Konstantin M. Zuev, 2018. "Efficient Pricing of Barrier Options on High Volatility Assets using Subset Simulation," Papers 1803.03364, arXiv.org, revised Mar 2018.
    18. Dai, Min & Li, Peifan & Zhang, Jin E., 2010. "A lattice algorithm for pricing moving average barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 542-554, March.
    19. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    20. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:17:y:2011:i:3:p:169-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.