IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v31y2012i5p558-591.html
   My bibliography  Save this article

Python for Unified Research in Econometrics and Statistics

Author

Listed:
  • Roseline Bilina
  • Steve Lawford

Abstract

Python is a powerful high-level open source programming language that is available for multiple platforms. It supports object-oriented programming and has recently become a serious alternative to low-level compiled languages such as C + +. It is easy to learn and use, and is recognized for very fast development times, which makes it suitable for rapid software prototyping as well as teaching purposes. We motivate the use of Python and its free extension modules for high performance stand-alone applications in econometrics and statistics, and as a tool for gluing different applications together. (It is in this sense that Python forms a “unified” environment for statistical research.) We give details on the core language features, which will enable a user to immediately begin work, and then provide practical examples of advanced uses of Python. Finally, we compare the run-time performance of extended Python against a number of commonly-used statistical packages and programming environments. Supplemental materials are available for this article. Go to the publisher's online edition of Econometric Reviews to view the free supplemental file.

Suggested Citation

  • Roseline Bilina & Steve Lawford, 2012. "Python for Unified Research in Econometrics and Statistics," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 558-591, September.
  • Handle: RePEc:taf:emetrv:v:31:y:2012:i:5:p:558-591
    DOI: 10.1080/07474938.2011.553573
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2011.553573
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christine Choirat & Raffello Seri, 2009. "Econometrics with Python," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 698-704.
    2. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    3. Zeileis, Achim & Koenker, Roger, 2008. "Econometrics in R: Past, Present, and Future," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i01).
    4. Roger Koenker & Achim Zeileis, 2009. "On reproducible econometric research," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 833-847.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:31:y:2012:i:5:p:558-591. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.