IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v36y2004i1p59-81.html
   My bibliography  Save this article

Effects of the optimal step toll scheme on equilibrium commuter behaviour

Author

Listed:
  • Chen-Hsiu Laih

Abstract

This paper derives commuters' equilibrium queuing costs and equilibrium schedule delay costs before and after levying the optimal step tolls at a queuing bottleneck. Dealing with these equilibrium costs technically one can forecast some changes in equilibrium commuter behaviour from the no-toll to the optimal step toll cases. There is some useful information provided in this paper. First, the number of commuters who will or will not pay the tolls can be investigated before tolling a queuing bottleneck. Second, all commuters' departure time switching decisions from the no-toll to the tolled cases can be investigated before tolling. Third, the increased leisure time in the morning to the toll payer due to depart from home later than their original departure times in the no-toll case can be investigated before tolling. The above information of equilibrium commuter behaviour, which the related literature has failed to provide, is useful to policy-makers if the optimal step toll scheme is considered to be put into practice.

Suggested Citation

  • Chen-Hsiu Laih, 2004. "Effects of the optimal step toll scheme on equilibrium commuter behaviour," Applied Economics, Taylor & Francis Journals, vol. 36(1), pages 59-81.
  • Handle: RePEc:taf:applec:v:36:y:2004:i:1:p:59-81
    DOI: 10.1080/0003684042000177206
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0003684042000177206
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0003684042000177206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    2. Yang, Hai & Meng, Qiang, 1998. "Departure time, route choice and congestion toll in a queuing network with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 32(4), pages 247-260, May.
    3. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    4. Yang, Hai & Hai-Jun, Huang, 1997. "Analysis of the time-varying pricing of a bottleneck with elastic demand using optimal control theory," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 425-440, November.
    5. De Palma, Andre & Arnott, Richard, 1986. "Usage-dependent peak-load pricing," Economics Letters, Elsevier, vol. 20(2), pages 101-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    2. Gonzales, Eric J., 2016. "Demand responsive transit systems with time-dependent demand: User equilibrium, system optimum, and management strategyAuthor-Name: Amirgholy, Mahyar," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 234-252.
    3. Yang, Hai & Liu, Wei & Wang, Xiaolei & Zhang, Xiaoning, 2013. "On the morning commute problem with bottleneck congestion and parking space constraints," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 106-118.
    4. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    5. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    6. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    7. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    8. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    9. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
    10. Yu, Xiaojuan & van den Berg, Vincent A.C. & Li, Zhi-Chun, 2023. "Congestion pricing and information provision under uncertainty: Responsive versus habitual pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    11. Yang, Hai & Tang, Yili, 2018. "Managing rail transit peak-hour congestion with a fare-reward scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 122-136.
    12. van den Berg, Vincent A.C., 2012. "Step-tolling with price-sensitive demand: Why more steps in the toll make the consumer better off," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1608-1622.
    13. Wu, Jiyan & Tian, Ye & Sun, Jian & Michael Zhang, H. & Wang, Yunpeng, 2023. "Public or private? Optimal organization for incentive-based travel demand management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    14. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
    15. Wada, Kentaro & Akamatsu, Takashi, 2013. "A hybrid implementation mechanism of tradable network permits system which obviates path enumeration: An auction mechanism with day-to-day capacity control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 94-112.
    16. Xu, Da & Guo, Xiaolei & Zhang, Guoqing, 2019. "Constrained optimization for bottleneck coarse tolling," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 1-22.
    17. Khan, Zaid & Amin, Saurabh, 2018. "Bottleneck model with heterogeneous information," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 157-190.
    18. Fosgerau, Mogens & Small, Kenneth A., 2013. "Hypercongestion in downtown metropolis," Journal of Urban Economics, Elsevier, vol. 76(C), pages 122-134.
    19. Ling-Ling Xiao & Hai-Jun Huang & Ronghui Liu, 2015. "Congestion Behavior and Tolls in a Bottleneck Model with Stochastic Capacity," Transportation Science, INFORMS, vol. 49(1), pages 46-65, February.
    20. Ramadurai, Gitakrishnan & Ukkusuri, Satish V. & Zhao, Jinye & Pang, Jong-Shi, 2010. "Linear complementarity formulation for single bottleneck model with heterogeneous commuters," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 193-214, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:36:y:2004:i:1:p:59-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.