IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v128y2019icp1-22.html
   My bibliography  Save this article

Constrained optimization for bottleneck coarse tolling

Author

Listed:
  • Xu, Da
  • Guo, Xiaolei
  • Zhang, Guoqing

Abstract

We study the optimal single-step coarse toll design problem for the bottleneck model where the toll level and tolling duration have maximum acceptable upper bounds and the unconstrained optimal solution exceeds the upper bounds. We consider proportional user heterogeneity where users’ values of time and schedule delay vary in fixed proportions. Three classic coarse tolling models are studied, the ADL, Laih and braking models. In the ADL model, untolled users form a mass arrival at the bottleneck following the last tolled user. In the Laih model, there is a separated waiting facility for untolled users to wait until the toll ends. In the braking model, untolled users can choose to defer their arrival at the bottleneck to avoid paying the toll. We find that, in the ADL and the Laih models, the optimal solution chooses the maximum acceptable toll level and tolling duration. The ADL model further requires the tolling period to be started as late as possible to eliminate the queue at the toll ending moment. In the braking model, if the upper bound of the tolling duration is too small, no toll should be charged. Otherwise the optimal solution chooses the maximum acceptable tolling duration and may choose a toll price less than the maximum acceptable level.

Suggested Citation

  • Xu, Da & Guo, Xiaolei & Zhang, Guoqing, 2019. "Constrained optimization for bottleneck coarse tolling," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 1-22.
  • Handle: RePEc:eee:transb:v:128:y:2019:i:c:p:1-22
    DOI: 10.1016/j.trb.2019.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518309858
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arnott Richard & Kraus Marvin, 1995. "Financing Capacity in the Bottleneck Model," Journal of Urban Economics, Elsevier, vol. 38(3), pages 272-290, November.
    2. van den Berg, Vincent & Verhoef, Erik T., 2011. "Congestion tolling in the bottleneck model with heterogeneous values of time," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 60-78, January.
    3. van den Berg, Vincent A.C., 2014. "Coarse tolling with heterogeneous preferences," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 1-23.
    4. Guo, Xiaolei & Yang, Hai, 2009. "User heterogeneity and bi-criteria system optimum," Transportation Research Part B: Methodological, Elsevier, vol. 43(4), pages 379-390, May.
    5. Robin Lindsey, C. & van den Berg, Vincent A.C. & Verhoef, Erik T., 2012. "Step tolling with bottleneck queuing congestion," Journal of Urban Economics, Elsevier, vol. 72(1), pages 46-59.
    6. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    7. Xiao, Feng & Qian, Zhen (Sean) & Zhang, H. Michael, 2013. "Managing bottleneck congestion with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 1-14.
    8. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    9. Yang, Hai & Hai-Jun, Huang, 1997. "Analysis of the time-varying pricing of a bottleneck with elastic demand using optimal control theory," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 425-440, November.
    10. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    11. Knockaert, Jasper & Verhoef, Erik T. & Rouwendal, Jan, 2016. "Bottleneck congestion: Differentiating the coarse charge," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 59-73.
    12. Jia, Zehui & Wang, David Z.W. & Cai, Xingju, 2016. "Traffic managements for household travels in congested morning commute," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 173-189.
    13. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    14. Feng Xiao & Zhen Qian & H. Zhang, 2011. "The Morning Commute Problem with Coarse Toll and Nonidentical Commuters," Networks and Spatial Economics, Springer, vol. 11(2), pages 343-369, June.
    15. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    16. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
    17. Xiao, Feng & Shen, Wei & Michael Zhang, H., 2012. "The morning commute under flat toll and tactical waiting," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1346-1359.
    18. Chen-Hsiu Laih, 2004. "Effects of the optimal step toll scheme on equilibrium commuter behaviour," Applied Economics, Taylor & Francis Journals, vol. 36(1), pages 59-81.
    19. Fielding, Gordon J., 2001. "Private Toll Roads: Acceptability of Congestion Pricing in Southern California," University of California Transportation Center, Working Papers qt749118j3, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Senlai Zhu & Hantao Yu & Congjun Fan, 2024. "Travel Plan Sharing and Regulation for Managing Traffic Bottleneck Based on Blockchain Technology," Sustainability, MDPI, vol. 16(4), pages 1-20, February.
    2. Xiao, Ling-Ling & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2021. "Temporal-spatial allocation of bottleneck capacity for managing morning commute with carpool," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 177-200.
    3. Vincent van den Berg, "undated". "Self-financing roads under coarse tolling and heterogeneous preferences," Tinbergen Institute Discussion Papers 22-045/VIII, Tinbergen Institute.
    4. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Vincent van den Berg, "undated". "Self-financing roads under coarse tolling and heterogeneous preferences," Tinbergen Institute Discussion Papers 22-045/VIII, Tinbergen Institute.
    3. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    4. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    5. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
    6. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2014. "Bottleneck model revisited: An activity-based perspective," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 262-287.
    7. van den Berg, Vincent A.C., 2014. "Coarse tolling with heterogeneous preferences," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 1-23.
    8. Yang, Hai & Tang, Yili, 2018. "Managing rail transit peak-hour congestion with a fare-reward scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 122-136.
    9. Guo, Ren-Yong & Yang, Hai & Huang, Hai-Jun & Li, Xinwei, 2018. "Day-to-day departure time choice under bounded rationality in the bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 832-849.
    10. Zhu, Tingting & Li, Yao & Long, Jiancheng, 2022. "Departure time choice equilibrium and tolling strategies for a bottleneck with continuous scheduling preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    11. Chen, Jin-Yong & Jiang, Rui & Li, Xin-Gang & Hu, Mao-Bin & Jia, Bin & Gao, Zi-You, 2019. "Morning commute problem with queue-length-dependent bottleneck capacity," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 184-215.
    12. Vincent A.C. van den Berg & Erik T. Verhoef, 2015. "Robot Cars and Dynamic Bottleneck Congestion: The Effects on Capacity, Value of Time and Preference Heterogeneity," Tinbergen Institute Discussion Papers 15-062/VIII, Tinbergen Institute, revised 11 Jul 2016.
    13. Braid, Ralph M., 2018. "Partial peak-load pricing of a transportation bottleneck with homogeneous and heterogeneous values of time," Economics of Transportation, Elsevier, vol. 16(C), pages 29-41.
    14. Ling-Ling Xiao & Hai-Jun Huang & Ronghui Liu, 2015. "Congestion Behavior and Tolls in a Bottleneck Model with Stochastic Capacity," Transportation Science, INFORMS, vol. 49(1), pages 46-65, February.
    15. Gonzales, Eric J., 2016. "Demand responsive transit systems with time-dependent demand: User equilibrium, system optimum, and management strategyAuthor-Name: Amirgholy, Mahyar," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 234-252.
    16. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
    17. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    18. Xiao, Ling-Ling & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2021. "Temporal-spatial allocation of bottleneck capacity for managing morning commute with carpool," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 177-200.
    19. Jiang, Changmin & Zhang, Anming, 2015. "Airport congestion pricing and terminal investment: Effects of terminal congestion, passenger types, and concessionsAuthor-Name: Wan, Yulai," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 91-113.
    20. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:128:y:2019:i:c:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.