IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v19y2012i6p513-534.html
   My bibliography  Save this article

Bonds and Options in Exponentially Affine Bond Models

Author

Listed:
  • Hans-Peter Bermin

Abstract

In this article we apply the Flesaker--Hughston approach to invert the yield curve and to price various options by letting the randomness in the economy be driven by a process closely related to the short rate, called the abstract short rate. This process is a pure deterministic translation of the short rate itself, and we use the deterministic shift to calibrate the models to the initial yield curve. We show that we can solve for the shift needed in closed form by transforming the problem to a new probability measure. Furthermore, when the abstract short rate follows a Cox--Ingersoll--Ross (CIR) process we compute bond option and swaption prices in closed form. We also propose a short-rate specification under the risk-neutral measure that allows the yield curve to be inverted and is consistent with the CIR dynamics for the abstract short rate, thus giving rise to closed form bond option and swaption prices.

Suggested Citation

  • Hans-Peter Bermin, 2012. "Bonds and Options in Exponentially Affine Bond Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(6), pages 513-534, December.
  • Handle: RePEc:taf:apmtfi:v:19:y:2012:i:6:p:513-534
    DOI: 10.1080/1350486X.2011.646505
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2011.646505
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamshidian, Farshid, 1989. " An Exact Bond Option Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 205-209, March.
    2. Farshid Jamshidian, 1996. "Bond, futures and option evaluation in the quadratic interest rate model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(2), pages 93-115.
    3. Erik Schlogl & Lutz Schlogl, 2000. "A square root interest rate model fitting discrete initial term structure data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(3), pages 183-209.
    4. Ho, Thomas S Y & Lee, Sang-bin, 1986. " Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    5. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    6. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
    7. Damiano Brigo & Fabio Mercurio, 2001. "A deterministic-shift extension of analytically-tractable and time-homogeneous short-rate models," Finance and Stochastics, Springer, vol. 5(3), pages 369-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:wsi:ijtafx:v:20:y:2017:i:02:n:s0219024917500091 is not listed on IDEAS
    2. Mitra, Sovan & Date, Paresh & Mamon, Rogemar & Wang, I-Chieh, 2013. "Pricing and risk management of interest rate swaps," European Journal of Operational Research, Elsevier, vol. 228(1), pages 102-111.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:19:y:2012:i:6:p:513-534. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.