IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Some frequency domain properties of fractionally cointegrated processes

Listed author(s):
  • Claudio Morana

The paper shows that the multiple squared coherence at the zero frequency for fractionally differenced (fractionally) cointegrated processes is equal to one, while the simple squared coherences assume a value greater than zero but lower than one. In the bivariate case the multiple and simple squared coherence coincide and, therefore, the simple squared coherence at the zero frequency assumes a unitary value. It is also found that processes that are not fractionally cointegrated show, in general, positive, but lower than one, multiple and simple squared coherences at the zero frequency. In the case the dependent and independent variables are driven by different long memory factors, i.e. in the case when the dependent variable is orthogonal at the zero frequency to any of the regressors, the squared multiple coherence will assume a zero value, as any of the squared simple coherences. It is finally shown that all the above results also hold for the series in levels, as the frequency tends to zero.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Applied Economics Letters.

Volume (Year): 11 (2004)
Issue (Month): 14 ()
Pages: 891-894

in new window

Handle: RePEc:taf:apeclt:v:11:y:2004:i:14:p:891-894
DOI: 10.1080/1350485042000261289
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:11:y:2004:i:14:p:891-894. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.