IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i3d10.1007_s11269-023-03706-7.html
   My bibliography  Save this article

Water Microturbines for Sustainable Applications: Optimization Analysis and Experimental Validation

Author

Listed:
  • A. M. Rodríguez-Pérez

    (University of Huelva
    University of Almería, CIMEDES Research Center (CeiA3))

  • C. A. Rodríguez-Gonzalez

    (University of Huelva)

  • R. López

    (University of Lleida
    University of Lleida)

  • J. A. Hernández-Torres

    (University of Huelva)

  • J. J. Caparrós-Mancera

    (University of Huelva)

Abstract

The use of microturbines in irrigation applications represents a great opportunity for increasing sustainable energy generation. Irrigation systems have water flow that can be used to generate electricity based on microturbines that are acceptably configure such, that efficiency in crop irrigation is not affected. This research validates this use of microturbines through a system designed specifically for the characterization of microturbine generation technology. This system includes a closed water pumping circuit capable of working under, different water flow settings, as well as flow, pressure, and electricity generation sensors. For this system, the production range of the microturbines and the pressure loss associated with the various proposed configurations are characterized and specifically quantified for the best performance. After design and characterization of a scalable microturbine system, the feasibility and benefits of this application to supporting most relevant crops supplied by localized irrigation are analysed. The experiments demonstrate the greatest benefit with the implementation of 15 series microturbines each at 80 V, alongside non-Citrus fruit, where a favourable balance is achieved for the amortization period in vineyards and citrus fruit. The results validate a profitable and sustainable design for electricity generation, with return on investment rates of up to 53%. Therefore, this research offers real and extensive applications, while being scalable to rural, residential, urban and industrial settings.

Suggested Citation

  • A. M. Rodríguez-Pérez & C. A. Rodríguez-Gonzalez & R. López & J. A. Hernández-Torres & J. J. Caparrós-Mancera, 2024. "Water Microturbines for Sustainable Applications: Optimization Analysis and Experimental Validation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(3), pages 1011-1025, February.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:3:d:10.1007_s11269-023-03706-7
    DOI: 10.1007/s11269-023-03706-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03706-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03706-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alessandra Rigo & Elena Andriollo & Elena Pisani, 2022. "Intermediary Organizations in Nature Conservation Initiatives: The Case of the EU-Funded LIFE Programme," Sustainability, MDPI, vol. 14(13), pages 1-28, June.
    2. Mihaela Simionescu & Carmen Beatrice Păuna & Tiberiu Diaconescu, 2020. "Renewable Energy and Economic Performance in the Context of the European Green Deal," Energies, MDPI, vol. 13(23), pages 1-19, December.
    3. Marco Sinagra & Enrico Creaco & Gabriele Morreale & Tullio Tucciarelli, 2023. "Energy Recovery Optimization by Means of a Turbine in a Pressure Regulation Node of a Real Water Network Through a Data-Driven Digital Twin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4733-4749, September.
    4. Ester Van der Voet & Lauran Van Oers & Miranda Verboon & Koen Kuipers, 2019. "Environmental Implications of Future Demand Scenarios for Metals: Methodology and Application to the Case of Seven Major Metals," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 141-155, February.
    5. Thomas Pirard & Vasileios Kitsikoudis & Sebastien Erpicum & Michel Pirotton & Pierre Archambeau & Benjamin Dewals, 2022. "Discharge Redistribution as a Key Process for Heuristic Optimization of Energy Production with Pumps as Turbines in a Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1237-1250, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karan Bhuwalka & Randolph E. Kirchain & Elsa A. Olivetti & Richard Roth, 2023. "Quantifying the drivers of long‐term prices in materials supply chains," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 141-154, February.
    2. Monica Aureliana Petcu & Eduard Madalin Dinu & Irina Daniela Cismasu & Raluca Andreea Popescu-Predulescu, 2023. "The Analysis of the Impact of Energy and Environmental Policies of the European Union on the Economic Performance of Companies. Case Study in the Transport Sector," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 362-362, April.
    3. Nils Thonemann & Anna Schulte & Daniel Maga, 2020. "How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    4. Di Foggia, Giacomo & Beccarello, Massimo, 2024. "European roadmaps to achieving 2030 renewable energy targets," Utilities Policy, Elsevier, vol. 88(C).
    5. Karan Bhuwalka & Eunseo Choi & Elizabeth A. Moore & Richard Roth & Randolph E. Kirchain & Elsa A. Olivetti, 2023. "A hierarchical Bayesian regression model that reduces uncertainty in material demand predictions," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 43-55, February.
    6. Ewa Mazur-Wierzbicka, 2022. "Measurement of Progress in the Environmental Area: Poland against the Countries of the European Union," IJERPH, MDPI, vol. 20(1), pages 1-27, December.
    7. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    8. Jorge Torrubia & Alicia Valero & Antonio Valero & Anthony Lejuez, 2023. "Challenges and Opportunities for the Recovery of Critical Raw Materials from Electronic Waste: The Spanish Perspective," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    9. Daryna Panasiuk & Ichiro Daigo & Takeo Hoshino & Hideo Hayashi & Eiji Yamasue & Duc Huy Tran & Benjamin Sprecher & Feng Shi & Volodymyr Shatokha, 2022. "International comparison of impurities mixing and accumulation in steel scrap," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1040-1050, June.
    10. Yu, Wenjin & Zhou, Peijian & Miao, Zhouqian & Zhao, Haoru & Mou, Jiegang & Zhou, Wenqiang, 2024. "Energy performance prediction of pump as turbine (PAT) based on PIWOA-BP neural network," Renewable Energy, Elsevier, vol. 222(C).
    11. Torrubia, Jorge & Valero, Alicia & Valero, Antonio, 2024. "Renewable exergy return on investment (RExROI) in energy systems. The case of silicon photovoltaic panels," Energy, Elsevier, vol. 304(C).
    12. Leonel J. R. Nunes & Margarida Casau & João C. O. Matias & Marta Ferreira Dias, 2022. "Assessment of Woody Residual Biomass Generation Capacity in the Central Region of Portugal: Analysis of the Power Production Potential," Land, MDPI, vol. 11(10), pages 1-15, October.
    13. Junguang Gao & Tao Chen & Thomas Schøtt & Fuzhen Gu, 2022. "Entrepreneurs’ Life Satisfaction Built on Satisfaction with Job and Work–Family Balance: Embedded in Society in China, Finland, and Sweden," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
    14. Constantin Anghelache & Mădălina Gabriela Anghel & Ștefan Virgil Iacob & Ion Pârțachi & Irina Gabriela Rădulescu & Alina Gabriela Brezoi, 2023. "Analysis of the Situation of Renewable and Non-Renewable Energy Consumption in the European Union," Energies, MDPI, vol. 16(3), pages 1-15, January.
    15. Maria Cristina Morani & Armando Carravetta & Oreste Fecarotta & Renato Montillo, 2024. "Detailed Audit of the Energy Efficiency in Water Systems: New Performance Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(4), pages 1241-1260, March.
    16. Christoph Helbig & Jonas Huether & Charlotte Joachimsthaler & Christian Lehmann & Simone Raatz & Andrea Thorenz & Martin Faulstich & Axel Tuma, 2022. "A terminology for downcycling," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1164-1174, August.
    17. Mihaela Simionescu & Magdalena Rădulescu & Javier Cifuentes-Faura, 2023. "Renewable Energy Consumption-Growth Nexus in European Countries: A Sectoral Approach," Evaluation Review, , vol. 47(2), pages 287-319, April.
    18. Anca Mehedintu & Georgeta Soava & Mihaela Sterpu & Eugenia Grecu, 2021. "Evolution and Forecasting of the Renewable Energy Consumption in the Frame of Sustainable Development: EU vs. Romania," Sustainability, MDPI, vol. 13(18), pages 1-30, September.
    19. Luigi Aldieri & Cristian Barra & Nazzareno Ruggiero & Concetto Paolo Vinci, 2021. "Green Energies, Employment, and Institutional Quality: Some Evidence for the OECD," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    20. Matthias Buyle & Amaryllis Audenaert & Pieter Billen & Katrien Boonen & Steven Van Passel, 2019. "The Future of Ex-Ante LCA? Lessons Learned and Practical Recommendations," Sustainability, MDPI, vol. 11(19), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:3:d:10.1007_s11269-023-03706-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.