IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1393-d1032331.html
   My bibliography  Save this article

Challenges and Opportunities for the Recovery of Critical Raw Materials from Electronic Waste: The Spanish Perspective

Author

Listed:
  • Jorge Torrubia

    (Research Centre for Energy Resources and Consumption, CIRCE Institute, Campues Río Ebro, University of Zaragoza, CIRCE Building, Mariano Esquillor Gómez, 15, 50018 Zaragoza, Spain)

  • Alicia Valero

    (Research Centre for Energy Resources and Consumption, CIRCE Institute, Campues Río Ebro, University of Zaragoza, CIRCE Building, Mariano Esquillor Gómez, 15, 50018 Zaragoza, Spain)

  • Antonio Valero

    (Research Centre for Energy Resources and Consumption, CIRCE Institute, Campues Río Ebro, University of Zaragoza, CIRCE Building, Mariano Esquillor Gómez, 15, 50018 Zaragoza, Spain)

  • Anthony Lejuez

    (Pulsyn, 24 Rue de Clichy, 75009 Paris, France)

Abstract

The path toward energy transition requires many metals, some of which are scarce in nature or their supply is controlled by a few countries. The European and Spanish situations are particularly vulnerable because of the scarcity of crucial geological mineral resources, especially those known as critical. In this context, the recovery of metals from waste electric and electronic equipment (WEEE) presents an important opportunity to partly alleviate this situation because this region produces most of the WEEE per capita. In this study, 43 different categories of EEE placed in the Spanish market between 2016 and 2021 were assessed, considering the composition of up to 57 elements, with 34 being critical. The results show the great opportunities for urban mining: 1.4 million tons of metals valued at USD 2.43 billion, representing 80% of the mass and 25% of the price of the primary extraction in Spain during that period. In addition, 20,000 tons corresponded to critical metals. However, the short life of EEE and the low traceability and low recovery of metals, especially critical and precious (94% and 87% of their values are lost, respectively), make it necessary to overcome major challenges to develop a new industry capable of moving toward a deeper circular economy.

Suggested Citation

  • Jorge Torrubia & Alicia Valero & Antonio Valero & Anthony Lejuez, 2023. "Challenges and Opportunities for the Recovery of Critical Raw Materials from Electronic Waste: The Spanish Perspective," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1393-:d:1032331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1393/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1393/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ester Van der Voet & Lauran Van Oers & Miranda Verboon & Koen Kuipers, 2019. "Environmental Implications of Future Demand Scenarios for Metals: Methodology and Application to the Case of Seven Major Metals," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 141-155, February.
    2. Antonio Valero & Jorge Torrubia & Miguel Ángel Anía & Alicia Torres, 2021. "Assessing Urban Metabolism through MSW Carbon Footprint and Conceptualizing Municipal-Industrial Symbiosis—The Case of Zaragoza City, Spain," Sustainability, MDPI, vol. 13(22), pages 1-34, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Niekurzak & Wojciech Lewicki & Hasan Huseyin Coban & Agnieszka Brelik, 2023. "Conceptual Design of a Semi-Automatic Process Line for Recycling Photovoltaic Panels as a Way to Ecological Sustainable Production," Sustainability, MDPI, vol. 15(3), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karan Bhuwalka & Randolph E. Kirchain & Elsa A. Olivetti & Richard Roth, 2023. "Quantifying the drivers of long‐term prices in materials supply chains," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 141-154, February.
    2. Nils Thonemann & Anna Schulte & Daniel Maga, 2020. "How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    3. Anastasiades, K. & Blom, J. & Buyle, M. & Audenaert, A., 2020. "Translating the circular economy to bridge construction: Lessons learnt from a critical literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Karan Bhuwalka & Eunseo Choi & Elizabeth A. Moore & Richard Roth & Randolph E. Kirchain & Elsa A. Olivetti, 2023. "A hierarchical Bayesian regression model that reduces uncertainty in material demand predictions," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 43-55, February.
    5. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    6. Tomer Fishman & Niko Heeren & Stefan Pauliuk & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 305-320, April.
    7. Philipp Schäfer & Mario Schmidt, 2021. "Model-based analysis of the limits of recycling for its contribution to climate change mitigation [Modellgestützte Analyse der Grenzen des Beitrags von Recycling zum Klimaschutz]," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 65-75, June.
    8. Daryna Panasiuk & Ichiro Daigo & Takeo Hoshino & Hideo Hayashi & Eiji Yamasue & Duc Huy Tran & Benjamin Sprecher & Feng Shi & Volodymyr Shatokha, 2022. "International comparison of impurities mixing and accumulation in steel scrap," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1040-1050, June.
    9. Christoph Helbig & Yasushi Kondo & Shinichiro Nakamura, 2022. "Simultaneously tracing the fate of seven metals at a global level with MaTrace‐multi," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 923-936, June.
    10. Chris Kennedy & Reid Lifset, 2020. "Winners of the 2019 Graedel Prizes: The Journal of Industrial Ecology Best Paper Prizes," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 940-942, October.
    11. Alexandre Charpentier Poncelet & Christoph Helbig & Philippe Loubet & Antoine Beylot & Stéphanie Muller & Jacques Villeneuve & Bertrand Laratte & Andrea Thorenz & Axel Tuma & Guido Sonnemann, 2021. "Life cycle impact assessment methods for estimating the impacts of dissipative flows of metals," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1177-1193, October.
    12. Talens Peiró, Laura & Martin, Nick & Villalba Méndez, Gara & Madrid-López, Cristina, 2022. "Integration of raw materials indicators of energy technologies into energy system models," Applied Energy, Elsevier, vol. 307(C).
    13. Fan Fei & Yan Wang & Xiaoyun Jia, 2022. "Assessment of the Mechanisms of Summer Thermal Environment of Waterfront Space in China’s Cold Regions," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    14. Christoph Helbig & Jonas Huether & Charlotte Joachimsthaler & Christian Lehmann & Simone Raatz & Andrea Thorenz & Martin Faulstich & Axel Tuma, 2022. "A terminology for downcycling," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1164-1174, August.
    15. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. Matthias Buyle & Amaryllis Audenaert & Pieter Billen & Katrien Boonen & Steven Van Passel, 2019. "The Future of Ex-Ante LCA? Lessons Learned and Practical Recommendations," Sustainability, MDPI, vol. 11(19), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1393-:d:1032331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.