IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i14d10.1007_s11269-024-03935-4.html
   My bibliography  Save this article

Desalination Powered by Renewables: A Challenge and an AI Opportunity

Author

Listed:
  • Tawfiq Chekifi

    (Unité de Recherche Appliqué en Energies Renouvelables, URAER, CDER
    CDER)

  • Amine Benmoussa

    (C-MAST, Universidade da Beira Interior)

  • Moustafa Boukraa

    (Research Center in Industrial Technologies CRTI)

Abstract

Renewable energy sources such as solar, wind, and geothermal hold significant promise for desalination, particularly in remote regions where access to conventional power sources may be limited. These renewable sources are often integrated with desalination methods like reverse osmosis or multi-stage flash to harness their energy potential. While certain combinations demonstrate reliability and cost-effectiveness, the intermittent nature of renewable energy poses challenges in system design, requiring innovative strategies such as combining solar and wind with battery storage or fuel cells. However, determining the optimal configuration for such integrated systems remains challenging using traditional methods due to the complex and dynamic nature of renewable energy resources. In this study, we focus on the application of Artificial Intelligence (AI) in improving the effectiveness and dependability of renewable-powered desalination systems. Specifically, we explore how AI, through techniques like forecasting models, optimization algorithms, and advanced control systems, can enhance the efficiency and sustainability of these systems. Our research delves into how AI-driven solutions can revolutionize the design, operation, and management of renewable-powered desalination plants. By integrating AI in forecasting, optimization, and control techniques, we aim to address challenges associated with renewable energy integration, ultimately paving the way for more efficient and sustainable water desalination processes.

Suggested Citation

  • Tawfiq Chekifi & Amine Benmoussa & Moustafa Boukraa, 2024. "Desalination Powered by Renewables: A Challenge and an AI Opportunity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5419-5461, November.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:14:d:10.1007_s11269-024-03935-4
    DOI: 10.1007/s11269-024-03935-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03935-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03935-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janghorban Esfahani, Iman & Yoo, ChangKyoo, 2016. "An optimization algorithm-based pinch analysis and GA for an off-grid batteryless photovoltaic-powered reverse osmosis desalination system," Renewable Energy, Elsevier, vol. 91(C), pages 233-248.
    2. Shi, Zhongtuo & Yao, Wei & Li, Zhouping & Zeng, Lingkang & Zhao, Yifan & Zhang, Runfeng & Tang, Yong & Wen, Jinyu, 2020. "Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions," Applied Energy, Elsevier, vol. 278(C).
    3. Li, Qian & Loy-Benitez, Jorge & Nam, KiJeon & Hwangbo, Soonho & Rashidi, Jouan & Yoo, ChangKyoo, 2019. "Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks," Energy, Elsevier, vol. 178(C), pages 277-292.
    4. Babaqi, Badiea S. & Takriff, Mohd S. & Othman, Nur Tantiyani A. & Kamarudin, Siti K., 2020. "Yield and energy optimization of the continuous catalytic regeneration reforming process based particle swarm optimization," Energy, Elsevier, vol. 206(C).
    5. Rabee Rustum & Anu Mary John Kurichiyanil & Shaun Forrest & Corrado Sommariva & Adebayo J. Adeloye & Mohammad Zounemat-Kermani & Miklas Scholz, 2020. "Sustainability Ranking of Desalination Plants Using Mamdani Fuzzy Logic Inference Systems," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
    6. Salam, Zainal & Ahmed, Jubaer & Merugu, Benny S., 2013. "The application of soft computing methods for MPPT of PV system: A technological and status review," Applied Energy, Elsevier, vol. 107(C), pages 135-148.
    7. Hall, Carrie & Sheng, Wanan & Wu, Yueqi & Aggidis, George, 2024. "The impact of model predictive control structures and constraints on a wave energy converter with hydraulic power take off system," Renewable Energy, Elsevier, vol. 224(C).
    8. Nicolas R. Dalezios & Andreas N. Angelakis & Seyed Saeid Eslamian, 2018. "Water scarcity management: part 1: methodological framework," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 17(1), pages 1-40.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ba-Alawi, Abdulrahman H. & Nguyen, Hai-Tra & Yoo, ChangKyoo, 2024. "Coordinated operation for a resilient and green energy-water supply system: A co-optimization approach with flexible strategies," Energy, Elsevier, vol. 304(C).
    2. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    4. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    5. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.
    6. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    7. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    8. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    9. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    10. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    11. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    12. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    13. Chao-Chung Hsu & Bi-Hai Jiang & Chun-Cheng Lin, 2023. "A Survey on Recent Applications of Artificial Intelligence and Optimization for Smart Grids in Smart Manufacturing," Energies, MDPI, vol. 16(22), pages 1-15, November.
    14. Belkaid, A. & Colak, I. & Isik, O., 2016. "Photovoltaic maximum power point tracking under fast varying of solar radiation," Applied Energy, Elsevier, vol. 179(C), pages 523-530.
    15. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    16. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    17. Huang, Jian & Hu, Yanwei & Bai, Yijie & He, Yurong & Zhu, Jiaqi, 2020. "Solar membrane distillation enhancement through thermal concentration," Energy, Elsevier, vol. 211(C).
    18. Nematian, Javad & Rahimi, Iman, 2022. "Feasibility study of using renewable energies in Iranian Seas: A comparative study," Renewable Energy, Elsevier, vol. 189(C), pages 383-391.
    19. Lu, Qing & Zhang, Yufeng, 2022. "A multi-objective optimization model considering users' satisfaction and multi-type demand response in dynamic electricity price," Energy, Elsevier, vol. 240(C).
    20. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:14:d:10.1007_s11269-024-03935-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.