IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i13d10.1007_s11269-022-03295-x.html
   My bibliography  Save this article

Performance Indexes Analysis of the Reservoir-Hydropower Plant System Affected by Climate Change

Author

Listed:
  • Parvin Golfam

    (University of Qom)

  • Parisa-Sadat Ashofteh

    (University of Qom)

Abstract

Assessing the effects of climate change phenomenon on the natural resources, especially available water resources, considering the existing constraints and planning to reduce its adverse effects, requires continuous monitoring and quantification of the adverse effects, so that policymakers can analyze the performance of any system in different conditions clearly and explicitly. The most important objectives of the present research including: (1) calculating the sustainability index for each demand node based on the characteristics of its water supply individually and also calculating the sustainability index of the whole water supply system, (2) investigation the compatible of changes trend among various reservoir performance indexes and (3) evaluation the changes in performance reservoir indexes in the future time period compared to the baseline tie period under three Concentration Pathway (RCP) RCP2.6, RCP4.5 and RCP8.5 scenarios for all water demand nodes and the entire water supply system. To this end, first, climatic parameters data affecting on the water resources such as temperature and precipitation were gathered in the baseline period (1977–2001) and the climatic scenarios were generated for the future period (2016–2040) using the Fifth Assessment Report (AR5) of the International Panel on Climate Change (IPCC). Then, the irrigation demand changes of the agricultural products with the Cropwat model and the value of inflow to the reservoir with the Artificial Neural Network (ANN) model were calculated under the climate change effects. In the next step, the climate change effects on the water supply and demand were simulated using Water Evaluation and Planning model (WEAP), and its results were extracted so as the water management indexes. The results show that the temperature will increase in the future period under all three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5) compared to the baseline period, while precipitation will decrease under the RCP2.6 scenario but will increases under RCP4.5 and RCP8.5 scenarios. Under the trend of changing in temperature and rainfall, the irrigation demand in the agricultural sector in all scenarios will increase compared to the baseline period. However, the inflow of reservoir will decrease under the RCP2.6 and RCP4.5 scenarios and will increases under RCP8.5 scenario. Evaluation of WEAP modeling results shows that the sustainability index of the entire Marun water-energy system will decrease in the future period compared to the baseline period under the RCP2.6, RCP4.5 and RCP8.5 scenarios by 13, 10 and 8%, respectively. The decrease in the system sustainability index shows that in the absence of early planning, the Marun water-energy supply system will face several challenges for meeting the increasing demand of water in different consumer sectors in the coming years.

Suggested Citation

  • Parvin Golfam & Parisa-Sadat Ashofteh, 2022. "Performance Indexes Analysis of the Reservoir-Hydropower Plant System Affected by Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5127-5162, October.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03295-x
    DOI: 10.1007/s11269-022-03295-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03295-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03295-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alireza Gohari & Ali Mirchi & Kaveh Madani, 2017. "Erratum to: System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4367-4368, October.
    2. João Vieira & Maria Conceição Cunha & Ricardo Luís, 2018. "Integrated Assessment of Water Reservoir Systems Performance with the Implementation of Ecological Flows under Varying Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5183-5205, December.
    3. Alireza Gohari & Ali Mirchi & Kaveh Madani, 2017. "System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1413-1434, March.
    4. S. Vijay & K. Kamaraj, 2021. "Prediction of Water Quality Index in Drinking Water Distribution System Using Activation Functions Based Ann," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 535-553, January.
    5. Mohammad H. Golmohammadi & Hamid R. Safavi & Samuel Sandoval-Solis & Mahmood Fooladi, 2021. "Improving Performance Criteria in the Water Resource Systems Based on Fuzzy Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 593-611, January.
    6. Farhad Yazdandoost & Sogol Moradian & Ardalan Izadi, 2020. "Evaluation of Water Sustainability under a Changing Climate in Zarrineh River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4831-4846, December.
    7. Walter Vergara & Alejandro Deeb & Irene Leino & Akio Kitoh & Marisa Escobar, 2011. "Assessment of the Impacts of Climate Change on Mountain Hydrology : Development of a Methodology through a Case Study in the Andes of Peru," World Bank Publications - Books, The World Bank Group, number 2278, December.
    8. Mohammad Karamouz & Paniz Mohammadpour & Davood Mahmoodzadeh, 2017. "Assessment of Sustainability in Water Supply-Demand Considering Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3761-3778, September.
    9. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Xuefeng Chu, 2021. "Development of a Combined Index to Evaluate Sustainability of Water Resources Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2965-2985, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Vieira & Maria Conceição Cunha & Ricardo Luís, 2018. "Integrated Assessment of Water Reservoir Systems Performance with the Implementation of Ecological Flows under Varying Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5183-5205, December.
    2. Mohammad H. Golmohammadi & Hamid R. Safavi & Samuel Sandoval-Solis & Mahmood Fooladi, 2021. "Improving Performance Criteria in the Water Resource Systems Based on Fuzzy Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 593-611, January.
    3. Qianjin Dong & Xu Zhang & Yalin Chen & Debin Fang, 2019. "Dynamic Management of a Water Resources-Socioeconomic-Environmental System Based on Feedbacks Using System Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2093-2108, April.
    4. Rasoul Maleki & Mehdi Nooripoor & Zeinab Sharifi & Dacinia Crina Petrescu, 2023. "Application of community‐based system dynamics for the management of rural households' vulnerability to the drying of Urmia Lake," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(3), pages 573-585, May.
    5. Reza Zamani & Ali Mohammad Akhond Ali & Abbas Roozbahani, 2020. "Evaluation of Adaptation Scenarios for Climate Change Impacts on Agricultural Water Allocation Using Fuzzy MCDM Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1093-1110, February.
    6. Aida Mehrazar & Ali Reza Massah Bavani & Alireza Gohari & Mahmoud Mashal & Hadisseh Rahimikhoob, 2020. "Adaptation of Water Resources System to Water Scarcity and Climate Change in the Suburb Area of Megacities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3855-3877, September.
    7. Wen-jing Niu & Zhong-kai Feng & Shuai Liu & Yu-bin Chen & Yin-shan Xu & Jun Zhang, 2021. "Multiple Hydropower Reservoirs Operation by Hyperbolic Grey Wolf Optimizer Based on Elitism Selection and Adaptive Mutation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 573-591, January.
    8. Gohari, Alireza & Savari, Peyman & Eslamian, Saeid & Etemadi, Nematollah & Keilmann-Gondhalekar, Daphne, 2022. "Developing a system dynamic plus framework for water-land-society nexus modeling within urban socio-hydrologic systems," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    9. Vahid Karimi & Ezatollah Karami & Shobeir Karami & Marzieh Keshavarz, 2021. "Adaptation to climate change through agricultural paradigm shift," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5465-5485, April.
    10. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Sahar Mohammad-Azari & Erfan Goharian, 2021. "Development of flood mitigation strategies toward sustainable development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2543-2567, September.
    11. Cervantes-Gaxiola, Maritza E. & Sosa-Niebla, Erik F. & Hernández-Calderón, Oscar M. & Ponce-Ortega, José M. & Ortiz-del-Castillo, Jesús R. & Rubio-Castro, Eusiel, 2020. "Optimal crop allocation including market trends and water availability," European Journal of Operational Research, Elsevier, vol. 285(2), pages 728-739.
    12. Karen S. Meijer & Femke Schasfoort & Maike Bennema, 2021. "Quantitative Modeling of Human Responses to Changes in Water Resources Availability: A Review of Methods and Theories," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    13. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    14. José-Luis Molina & Santiago Zazo & Ana-María Martín-Casado & María-Carmen Patino-Alonso, 2020. "Rivers’ Temporal Sustainability through the Evaluation of Predictive Runoff Methods," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
    15. P. Biglarbeigi & W. A. Strong & D. Finlay & R. McDermott & P. Griffiths, 2020. "A Hybrid Model-Based Adaptive Framework for the Analysis of Climate Change Impact on Reservoir Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4053-4066, October.
    16. Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.
    17. Layani, Ghasem & Bakhshoodeh, Mohammad & Zibaei, Mansour & Viaggi, Davide, 2021. "Sustainable water resources management under population growth and agricultural development in the Kheirabad river basin, Iran," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 10(4), December.
    18. Farhad Yazdandoost & Sogol Moradian & Ardalan Izadi, 2020. "Evaluation of Water Sustainability under a Changing Climate in Zarrineh River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4831-4846, December.
    19. Mahsa Mirdashtvan & Ali Najafinejad & Arash Malekian & Amir Sa’doddin, 2021. "Sustainable Water Supply and Demand Management in Semi-arid Regions: Optimizing Water Resources Allocation Based on RCPs Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5307-5324, December.
    20. George Halkos & Antonis Skouloudis & Chrisovalantis Malesios & Nikoleta Jones, 2020. "A Hierarchical Multilevel Approach in Assessing Factors Explaining Country-Level Climate Change Vulnerability," Sustainability, MDPI, vol. 12(11), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:13:d:10.1007_s11269-022-03295-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.