IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5391-d1421776.html
   My bibliography  Save this article

Assessing Reliability, Resilience and Vulnerability of Water Supply from SuDS

Author

Listed:
  • Andrea Sulis

    (Department of Architecture, Design and Urban Planning, University of Sassari, 07041 Alghero, Italy)

  • Martina Altana

    (Department of Architecture, Design and Urban Planning, University of Sassari, 07041 Alghero, Italy)

  • Gianfranco Sanna

    (Department of Architecture, Design and Urban Planning, University of Sassari, 07041 Alghero, Italy)

Abstract

In recent decades, the impacts of urbanization on the hydrological cycle have led to an increase in the frequency and magnitude of urban flooding events, and this is also amplified by the effects of climate change. Sustainable Drainage Systems (SuDS) provide a revolutionary change in this field, improving the sustainability and resilience of cities. This research explores the integration of different SuDS with the aim of significantly reducing both the flow volume and celerity of floods in a residual urban catchment area of the metropolitan city of Querétaro (Mèxico), where extreme rainfall frequently occurs. This catchment is a representative suburb of urban pressure and environmental degradation problems. Currently, managing storm water under climate uncertainty through a multi-disciplinary approach is a major concern in this urban area. A 1D–2D coupling model of shallow water equations, the finite volume method, an unstructured meshing method, and a hybrid parallel computing application defined the optimal configuration of SuDS at catchment scale to reduce the flood vulnerability in Querétaro. Specifically, in this paper, we explore the management issues of the proposed SuDS configuration that acts as a water resource system with multiple purposes. A generic simulation model called MODSIM was applied to simulate the designed urban drainage system under a balanced IPCC future climate scenario in terms of reliability, resilience and vulnerability against water scarcity. The proposed hierarchical Reliability–Resilience–Vulnerability approach appears to be effective in evaluating the system performance, showing that the complete satisfaction of non-essential water uses in Querétaro can be assured at a 65% rate of reliability for a large range of reservoir storage conditions.

Suggested Citation

  • Andrea Sulis & Martina Altana & Gianfranco Sanna, 2024. "Assessing Reliability, Resilience and Vulnerability of Water Supply from SuDS," Sustainability, MDPI, vol. 16(13), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5391-:d:1421776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Jato-Espino & Susanne M. Charlesworth & Joseba R. Bayon & Frank Warwick, 2016. "Rainfall–Runoff Simulations to Assess the Potential of SuDS for Mitigating Flooding in Highly Urbanized Catchments," IJERPH, MDPI, vol. 13(1), pages 1-13, January.
    2. M. Shourian & S. Mousavi & A. Tahershamsi, 2008. "Basin-wide Water Resources Planning by Integrating PSO Algorithm and MODSIM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1347-1366, October.
    3. Johnson, Daniel & Geisendorf, Sylvie, 2019. "Are Neighborhood-level SUDS Worth it? An Assessment of the Economic Value of Sustainable Urban Drainage System Scenarios Using Cost-Benefit Analyses," Ecological Economics, Elsevier, vol. 158(C), pages 194-205.
    4. Farhad Yazdandoost & Sogol Moradian & Ardalan Izadi, 2020. "Evaluation of Water Sustainability under a Changing Climate in Zarrineh River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4831-4846, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Sulis, 2025. "Assessing Human Vulnerability to Urban Flood in Southern Sardinia (IT)," Sustainability, MDPI, vol. 17(18), pages 1-17, September.
    2. Liddle, Sasha & Russo, Alessio, 2025. "Beyond stormwater management: Exploring the social aspects of retrofitting raingardens for deprivation alleviation in Gloucestershire, UK," Land Use Policy, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Peng & Jinggang Chu & Anbang Peng & Huicheng Zhou, 2015. "Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3787-3806, August.
    2. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    3. A. Dariane & S. Sarani, 2013. "Application of Intelligent Water Drops Algorithm in Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4827-4843, November.
    4. Abbas Al-Omari & Saleh Al-Quraan & Adnan Al-Salihi & Fayez Abdulla, 2009. "A Water Management Support System for Amman Zarqa Basin in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3165-3189, December.
    5. J. Doummar & M. Massoud & R. Khoury & M. Khawlie, 2009. "Optimal Water Resources Management: Case of Lower Litani River, Lebanon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2343-2360, September.
    6. S. Jamshid Mousavi & Nasrin Rafiee Anzab & Bentolhoda Asl-Rousta & Joong Hoon Kim, 2017. "Multi-Objective Optimization-Simulation for Reliability-Based Inter-Basin Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3445-3464, September.
    7. Navid Shenava & Mojtaba Shourian, 2018. "Optimal Reservoir Operation with Water Supply Enhancement and Flood Mitigation Objectives Using an Optimization-Simulation Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4393-4407, October.
    8. Lutz Philip Hecker & Frank Wätzold & Astrid Sturm & Beate Zimmermann & Sarah Kruber & Christian Hildmann, 2025. "Keep cool in a changing climate: an integrated modelling procedure for costeffective mitigation of rising temperatures in rural landscapes," Climatic Change, Springer, vol. 178(5), pages 1-22, May.
    9. Amir Hatamkhani & Ali Moridi, 2019. "Multi-Objective Optimization of Hydropower and Agricultural Development at River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4431-4450, October.
    10. Sogol Moradian & Liz Coleman & Bartosz Kazmierczak & Agnieszka I. Olbert, 2024. "How to Choose the Most Proper Representative Climate Model Over a Study Region? a Case Study of Precipitation Simulations in Ireland with NEX-GDDP-CMIP6 Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 215-234, January.
    11. Jianxia Chang & Yanbin Kan & Yimin Wang & Qiang Huang & Lei Chen, 2017. "Conjunctive Operation of Reservoirs and Ponds Using a Simulation-Optimization Model of Irrigation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 995-1012, February.
    12. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    13. Bojun Liu & Jun Xia & Feilin Zhu & Jin Quan & Hao Wang, 2021. "Response of Hydrodynamics and Water-quality Conditions to Climate Change in a Shallow Lake," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4961-4976, November.
    14. Leila Ostadrahimi & Miguel Mariño & Abbas Afshar, 2012. "Multi-reservoir Operation Rules: Multi-swarm PSO-based Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 407-427, January.
    15. Maryam Javan Salehi & Mojtaba Shourian, 2021. "Comparative Application of Model Predictive Control and Particle Swarm Optimization in Optimum Operation of a Large-Scale Water Transfer System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 707-727, January.
    16. Daniel Johnson & Judith Exl & Sylvie Geisendorf, 2021. "The Potential of Stormwater Management in Addressing the Urban Heat Island Effect: An Economic Valuation," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    17. Liddle, Sasha & Russo, Alessio, 2025. "Beyond stormwater management: Exploring the social aspects of retrofitting raingardens for deprivation alleviation in Gloucestershire, UK," Land Use Policy, Elsevier, vol. 151(C).
    18. Cutter, W. & Pusch, Alexander, 2020. "The Role of Cost, Scale, and Property Attributes in Landowner Choice of Stormwater Management Option," Economics Department, Working Paper Series 1015, Economics Department, Pomona College, revised 12 Aug 2020.
    19. Mohammad H. Golmohammadi & Hamid R. Safavi & Samuel Sandoval-Solis & Mahmood Fooladi, 2021. "Improving Performance Criteria in the Water Resource Systems Based on Fuzzy Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 593-611, January.
    20. Kian Fadaeizadeh & Mojtaba Shourian, 2019. "Determination of the Optimal River Basin-Wide Agricultural Water Demand Quantities Meeting Satisfactory Reliability Levels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2665-2676, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5391-:d:1421776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.